MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrss Structured version   Unicode version

Theorem ntrss 17124
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ntrss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)

Proof of Theorem ntrss
StepHypRef Expression
1 sscon 3483 . . . . . . 7  |-  ( T 
C_  S  ->  ( X  \  S )  C_  ( X  \  T ) )
21adantl 454 . . . . . 6  |-  ( ( S  C_  X  /\  T  C_  S )  -> 
( X  \  S
)  C_  ( X  \  T ) )
3 difss 3476 . . . . . 6  |-  ( X 
\  T )  C_  X
42, 3jctil 525 . . . . 5  |-  ( ( S  C_  X  /\  T  C_  S )  -> 
( ( X  \  T )  C_  X  /\  ( X  \  S
)  C_  ( X  \  T ) ) )
5 clscld.1 . . . . . . 7  |-  X  = 
U. J
65clsss 17123 . . . . . 6  |-  ( ( J  e.  Top  /\  ( X  \  T ) 
C_  X  /\  ( X  \  S )  C_  ( X  \  T ) )  ->  ( ( cls `  J ) `  ( X  \  S ) )  C_  ( ( cls `  J ) `  ( X  \  T ) ) )
763expb 1155 . . . . 5  |-  ( ( J  e.  Top  /\  ( ( X  \  T )  C_  X  /\  ( X  \  S
)  C_  ( X  \  T ) ) )  ->  ( ( cls `  J ) `  ( X  \  S ) ) 
C_  ( ( cls `  J ) `  ( X  \  T ) ) )
84, 7sylan2 462 . . . 4  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  T  C_  S ) )  ->  ( ( cls `  J ) `  ( X  \  S ) ) 
C_  ( ( cls `  J ) `  ( X  \  T ) ) )
98sscond 3486 . . 3  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  T  C_  S ) )  ->  ( X  \ 
( ( cls `  J
) `  ( X  \  T ) ) ) 
C_  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) )
10 sstr2 3357 . . . . 5  |-  ( T 
C_  S  ->  ( S  C_  X  ->  T  C_  X ) )
1110impcom 421 . . . 4  |-  ( ( S  C_  X  /\  T  C_  S )  ->  T  C_  X )
125ntrval2 17120 . . . 4  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( int `  J
) `  T )  =  ( X  \ 
( ( cls `  J
) `  ( X  \  T ) ) ) )
1311, 12sylan2 462 . . 3  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  T  C_  S ) )  ->  ( ( int `  J ) `  T
)  =  ( X 
\  ( ( cls `  J ) `  ( X  \  T ) ) ) )
145ntrval2 17120 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) )
1514adantrr 699 . . 3  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  T  C_  S ) )  ->  ( ( int `  J ) `  S
)  =  ( X 
\  ( ( cls `  J ) `  ( X  \  S ) ) ) )
169, 13, 153sstr4d 3393 . 2  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  T  C_  S ) )  ->  ( ( int `  J ) `  T
)  C_  ( ( int `  J ) `  S ) )
17163impb 1150 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( int `  J
) `  T )  C_  ( ( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    \ cdif 3319    C_ wss 3322   U.cuni 4017   ` cfv 5457   Topctop 16963   intcnt 17086   clsccl 17087
This theorem is referenced by:  ntrin  17130  ntrcls0  17145  dvreslem  19801  dvres2lem  19802  dvaddbr  19829  dvmulbr  19830  dvcnvrelem2  19907  ntruni  26344  cldregopn  26348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-top 16968  df-cld 17088  df-ntr 17089  df-cls 17090
  Copyright terms: Public domain W3C validator