MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  num0u Structured version   Unicode version

Theorem num0u 10391
Description: Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1  |-  T  e. 
NN0
numnncl.2  |-  A  e. 
NN0
Assertion
Ref Expression
num0u  |-  ( T  x.  A )  =  ( ( T  x.  A )  +  0 )

Proof of Theorem num0u
StepHypRef Expression
1 numnncl.1 . . . . 5  |-  T  e. 
NN0
2 numnncl.2 . . . . 5  |-  A  e. 
NN0
31, 2nn0mulcli 10258 . . . 4  |-  ( T  x.  A )  e. 
NN0
43nn0cni 10233 . . 3  |-  ( T  x.  A )  e.  CC
54addid1i 9253 . 2  |-  ( ( T  x.  A )  +  0 )  =  ( T  x.  A
)
65eqcomi 2440 1  |-  ( T  x.  A )  =  ( ( T  x.  A )  +  0 )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725  (class class class)co 6081   0cc0 8990    + caddc 8993    x. cmul 8995   NN0cn0 10221
This theorem is referenced by:  dec0u  10397  numsucc  10408  nummul1c  10418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-ltxr 9125  df-nn 10001  df-n0 10222
  Copyright terms: Public domain W3C validator