MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Unicode version

Theorem numacn 7863
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )

Proof of Theorem numacn
Dummy variables  f 
g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2907 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpll 731 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  X  e.  dom  card )
3 elmapi 6974 . . . . . . . . . . . 12  |-  ( f  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  f : A --> ( ~P X  \  { (/)
} ) )
43adantl 453 . . . . . . . . . . 11  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f : A --> ( ~P X  \  { (/) } ) )
5 frn 5537 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  ran  f  C_  ( ~P X  \  { (/)
} ) )
64, 5syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ( ~P X  \  { (/) } ) )
76difss2d 3420 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ~P X
)
8 sspwuni 4117 . . . . . . . . 9  |-  ( ran  f  C_  ~P X  <->  U.
ran  f  C_  X
)
97, 8sylib 189 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  C_  X
)
10 ssnum 7853 . . . . . . . 8  |-  ( ( X  e.  dom  card  /\ 
U. ran  f  C_  X )  ->  U. ran  f  e.  dom  card )
112, 9, 10syl2anc 643 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  e.  dom  card )
12 ssdifin0 3652 . . . . . . . . 9  |-  ( ran  f  C_  ( ~P X  \  { (/) } )  ->  ( ran  f  i^i  { (/) } )  =  (/) )
136, 12syl 16 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( ran  f  i^i  {
(/) } )  =  (/) )
14 disjsn 3811 . . . . . . . 8  |-  ( ( ran  f  i^i  { (/)
} )  =  (/)  <->  -.  (/) 
e.  ran  f )
1513, 14sylib 189 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  -.  (/)  e.  ran  f
)
16 ac5num 7850 . . . . . . 7  |-  ( ( U. ran  f  e. 
dom  card  /\  -.  (/)  e.  ran  f )  ->  E. h
( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )
1711, 15, 16syl2anc 643 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h ( h : ran  f --> U. ran  f  /\  A. y  e. 
ran  f ( h `
 y )  e.  y ) )
18 simpllr 736 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A  e.  _V )
19 ffn 5531 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  f  Fn  A )
204, 19syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f  Fn  A )
21 fveq2 5668 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  (
h `  y )  =  ( h `  ( f `  x
) ) )
22 id 20 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  y  =  ( f `  x ) )
2321, 22eleq12d 2455 . . . . . . . . . . 11  |-  ( y  =  ( f `  x )  ->  (
( h `  y
)  e.  y  <->  ( h `  ( f `  x
) )  e.  ( f `  x ) ) )
2423ralrn 5812 . . . . . . . . . 10  |-  ( f  Fn  A  ->  ( A. y  e.  ran  f ( h `  y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2520, 24syl 16 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( A. y  e. 
ran  f ( h `
 y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2625biimpa 471 . . . . . . . 8  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  A. y  e.  ran  f
( h `  y
)  e.  y )  ->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) )
2726adantrl 697 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A. x  e.  A  ( h `  ( f `  x
) )  e.  ( f `  x ) )
28 acnlem 7862 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( h `  ( f `
 x ) )  e.  ( f `  x ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
2918, 27, 28syl2anc 643 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
3017, 29exlimddv 1645 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
3130ralrimiva 2732 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
32 isacn 7858 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
3331, 32mpbird 224 . . 3  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  X  e. AC  A )
3433expcom 425 . 2  |-  ( A  e.  _V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
351, 34syl 16 1  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   U.cuni 3957   dom cdm 4818   ran crn 4819    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    ^m cmap 6954   cardccrd 7755  AC wacn 7758
This theorem is referenced by:  acnnum  7866  fodomnum  7871  acacni  7953  dfac13  7955  iundom  8350  iunctb  8382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-card 7759  df-acn 7762
  Copyright terms: Public domain W3C validator