MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numacn Structured version   Unicode version

Theorem numacn 7922
Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
numacn  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )

Proof of Theorem numacn
Dummy variables  f 
g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2956 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 simpll 731 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  X  e.  dom  card )
3 elmapi 7030 . . . . . . . . . . . 12  |-  ( f  e.  ( ( ~P X  \  { (/) } )  ^m  A )  ->  f : A --> ( ~P X  \  { (/)
} ) )
43adantl 453 . . . . . . . . . . 11  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f : A --> ( ~P X  \  { (/) } ) )
5 frn 5589 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  ran  f  C_  ( ~P X  \  { (/)
} ) )
64, 5syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ( ~P X  \  { (/) } ) )
76difss2d 3469 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  ran  f  C_  ~P X
)
8 sspwuni 4168 . . . . . . . . 9  |-  ( ran  f  C_  ~P X  <->  U.
ran  f  C_  X
)
97, 8sylib 189 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  C_  X
)
10 ssnum 7912 . . . . . . . 8  |-  ( ( X  e.  dom  card  /\ 
U. ran  f  C_  X )  ->  U. ran  f  e.  dom  card )
112, 9, 10syl2anc 643 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  U. ran  f  e.  dom  card )
12 ssdifin0 3701 . . . . . . . . 9  |-  ( ran  f  C_  ( ~P X  \  { (/) } )  ->  ( ran  f  i^i  { (/) } )  =  (/) )
136, 12syl 16 . . . . . . . 8  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( ran  f  i^i  {
(/) } )  =  (/) )
14 disjsn 3860 . . . . . . . 8  |-  ( ( ran  f  i^i  { (/)
} )  =  (/)  <->  -.  (/) 
e.  ran  f )
1513, 14sylib 189 . . . . . . 7  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  -.  (/)  e.  ran  f
)
16 ac5num 7909 . . . . . . 7  |-  ( ( U. ran  f  e. 
dom  card  /\  -.  (/)  e.  ran  f )  ->  E. h
( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )
1711, 15, 16syl2anc 643 . . . . . 6  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. h ( h : ran  f --> U. ran  f  /\  A. y  e. 
ran  f ( h `
 y )  e.  y ) )
18 simpllr 736 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A  e.  _V )
19 ffn 5583 . . . . . . . . . . 11  |-  ( f : A --> ( ~P X  \  { (/) } )  ->  f  Fn  A )
204, 19syl 16 . . . . . . . . . 10  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
f  Fn  A )
21 fveq2 5720 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  (
h `  y )  =  ( h `  ( f `  x
) ) )
22 id 20 . . . . . . . . . . . 12  |-  ( y  =  ( f `  x )  ->  y  =  ( f `  x ) )
2321, 22eleq12d 2503 . . . . . . . . . . 11  |-  ( y  =  ( f `  x )  ->  (
( h `  y
)  e.  y  <->  ( h `  ( f `  x
) )  e.  ( f `  x ) ) )
2423ralrn 5865 . . . . . . . . . 10  |-  ( f  Fn  A  ->  ( A. y  e.  ran  f ( h `  y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2520, 24syl 16 . . . . . . . . 9  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  -> 
( A. y  e. 
ran  f ( h `
 y )  e.  y  <->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) ) )
2625biimpa 471 . . . . . . . 8  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  A. y  e.  ran  f
( h `  y
)  e.  y )  ->  A. x  e.  A  ( h `  (
f `  x )
)  e.  ( f `
 x ) )
2726adantrl 697 . . . . . . 7  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  A. x  e.  A  ( h `  ( f `  x
) )  e.  ( f `  x ) )
28 acnlem 7921 . . . . . . 7  |-  ( ( A  e.  _V  /\  A. x  e.  A  ( h `  ( f `
 x ) )  e.  ( f `  x ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
2918, 27, 28syl2anc 643 . . . . . 6  |-  ( ( ( ( X  e. 
dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  /\  ( h : ran  f
--> U. ran  f  /\  A. y  e.  ran  f
( h `  y
)  e.  y ) )  ->  E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
3017, 29exlimddv 1648 . . . . 5  |-  ( ( ( X  e.  dom  card  /\  A  e.  _V )  /\  f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) )  ->  E. g A. x  e.  A  ( g `  x )  e.  ( f `  x ) )
3130ralrimiva 2781 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) )
32 isacn 7917 . . . 4  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  ( X  e. AC  A  <->  A. f  e.  ( ( ~P X  \  { (/) } )  ^m  A ) E. g A. x  e.  A  ( g `  x
)  e.  ( f `
 x ) ) )
3331, 32mpbird 224 . . 3  |-  ( ( X  e.  dom  card  /\  A  e.  _V )  ->  X  e. AC  A )
3433expcom 425 . 2  |-  ( A  e.  _V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
351, 34syl 16 1  |-  ( A  e.  V  ->  ( X  e.  dom  card  ->  X  e. AC  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    \ cdif 3309    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007   dom cdm 4870   ran crn 4871    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   cardccrd 7814  AC wacn 7817
This theorem is referenced by:  acnnum  7925  fodomnum  7930  acacni  8012  dfac13  8014  iundom  8409  iunctb  8441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-card 7818  df-acn 7821
  Copyright terms: Public domain W3C validator