MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummul2c Structured version   Unicode version

Theorem nummul2c 10411
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
nummul1c.1  |-  T  e. 
NN0
nummul1c.2  |-  P  e. 
NN0
nummul1c.3  |-  A  e. 
NN0
nummul1c.4  |-  B  e. 
NN0
nummul1c.5  |-  N  =  ( ( T  x.  A )  +  B
)
nummul1c.6  |-  D  e. 
NN0
nummul1c.7  |-  E  e. 
NN0
nummul2c.7  |-  ( ( P  x.  A )  +  E )  =  C
nummul2c.8  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
Assertion
Ref Expression
nummul2c  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)

Proof of Theorem nummul2c
StepHypRef Expression
1 nummul1c.5 . . . 4  |-  N  =  ( ( T  x.  A )  +  B
)
2 nummul1c.1 . . . . 5  |-  T  e. 
NN0
3 nummul1c.3 . . . . 5  |-  A  e. 
NN0
4 nummul1c.4 . . . . 5  |-  B  e. 
NN0
52, 3, 4numcl 10385 . . . 4  |-  ( ( T  x.  A )  +  B )  e. 
NN0
61, 5eqeltri 2505 . . 3  |-  N  e. 
NN0
76nn0cni 10225 . 2  |-  N  e.  CC
8 nummul1c.2 . . 3  |-  P  e. 
NN0
98nn0cni 10225 . 2  |-  P  e.  CC
10 nummul1c.6 . . 3  |-  D  e. 
NN0
11 nummul1c.7 . . 3  |-  E  e. 
NN0
123nn0cni 10225 . . . . . 6  |-  A  e.  CC
1312, 9mulcomi 9088 . . . . 5  |-  ( A  x.  P )  =  ( P  x.  A
)
1413oveq1i 6083 . . . 4  |-  ( ( A  x.  P )  +  E )  =  ( ( P  x.  A )  +  E
)
15 nummul2c.7 . . . 4  |-  ( ( P  x.  A )  +  E )  =  C
1614, 15eqtri 2455 . . 3  |-  ( ( A  x.  P )  +  E )  =  C
174nn0cni 10225 . . . 4  |-  B  e.  CC
18 nummul2c.8 . . . 4  |-  ( P  x.  B )  =  ( ( T  x.  E )  +  D
)
199, 17, 18mulcomli 9089 . . 3  |-  ( B  x.  P )  =  ( ( T  x.  E )  +  D
)
202, 8, 3, 4, 1, 10, 11, 16, 19nummul1c 10410 . 2  |-  ( N  x.  P )  =  ( ( T  x.  C )  +  D
)
217, 9, 20mulcomli 9089 1  |-  ( P  x.  N )  =  ( ( T  x.  C )  +  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725  (class class class)co 6073    + caddc 8985    x. cmul 8987   NN0cn0 10213
This theorem is referenced by:  decmul2c  10422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-ltxr 9117  df-sub 9285  df-nn 9993  df-n0 10214
  Copyright terms: Public domain W3C validator