MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0 Unicode version

Theorem nv0 21211
Description: Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0.1  |-  X  =  ( BaseSet `  U )
nv0.4  |-  S  =  ( .s OLD `  U
)
nv0.6  |-  Z  =  ( 0vec `  U
)
Assertion
Ref Expression
nv0  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 S A )  =  Z )

Proof of Theorem nv0
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 21187 . . 3  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 eqid 2296 . . . . 5  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 21175 . . . 4  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nv0.4 . . . . 5  |-  S  =  ( .s OLD `  U
)
65smfval 21177 . . . 4  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nv0.1 . . . . 5  |-  X  =  ( BaseSet `  U )
87, 3bafval 21176 . . . 4  |-  X  =  ran  ( +v `  U )
9 eqid 2296 . . . 4  |-  (GId `  ( +v `  U ) )  =  (GId `  ( +v `  U ) )
104, 6, 8, 9vc0 21141 . . 3  |-  ( ( ( 1st `  U
)  e.  CVec OLD  /\  A  e.  X )  ->  ( 0 S A )  =  (GId
`  ( +v `  U ) ) )
112, 10sylan 457 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 S A )  =  (GId `  ( +v `  U ) ) )
12 nv0.6 . . . 4  |-  Z  =  ( 0vec `  U
)
133, 120vfval 21178 . . 3  |-  ( U  e.  NrmCVec  ->  Z  =  (GId
`  ( +v `  U ) ) )
1413adantr 451 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  Z  =  (GId `  ( +v `  U ) ) )
1511, 14eqtr4d 2331 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
0 S A )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   1stc1st 6136   0cc0 8753  GIdcgi 20870   CVec OLDcvc 21117   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160
This theorem is referenced by:  nvmul0or  21226  nvz0  21250  nvge0  21256  ipasslem1  21425  hlmul0  21504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-grpo 20874  df-gid 20875  df-ginv 20876  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator