MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0rid Unicode version

Theorem nv0rid 21301
Description: The zero vector is a right identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0id.1  |-  X  =  ( BaseSet `  U )
nv0id.2  |-  G  =  ( +v `  U
)
nv0id.6  |-  Z  =  ( 0vec `  U
)
Assertion
Ref Expression
nv0rid  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G Z )  =  A )

Proof of Theorem nv0rid
StepHypRef Expression
1 nv0id.2 . . . . 5  |-  G  =  ( +v `  U
)
2 nv0id.6 . . . . 5  |-  Z  =  ( 0vec `  U
)
31, 20vfval 21270 . . . 4  |-  ( U  e.  NrmCVec  ->  Z  =  (GId
`  G ) )
43oveq2d 5958 . . 3  |-  ( U  e.  NrmCVec  ->  ( A G Z )  =  ( A G (GId `  G ) ) )
54adantr 451 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G Z )  =  ( A G (GId
`  G ) ) )
61nvgrp 21281 . . 3  |-  ( U  e.  NrmCVec  ->  G  e.  GrpOp )
7 nv0id.1 . . . . 5  |-  X  =  ( BaseSet `  U )
87, 1bafval 21268 . . . 4  |-  X  =  ran  G
9 eqid 2358 . . . 4  |-  (GId `  G )  =  (GId
`  G )
108, 9grporid 20993 . . 3  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
116, 10sylan 457 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G (GId `  G
) )  =  A )
125, 11eqtrd 2390 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A G Z )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   ` cfv 5334  (class class class)co 5942   GrpOpcgr 20959  GIdcgi 20960   NrmCVeccnv 21248   +vcpv 21249   BaseSetcba 21250   0veccn0v 21252
This theorem is referenced by:  nvsubadd  21321  nvabs  21347  nvnd  21365  imsmetlem  21367  lnomul  21446  0lno  21476  ipdirilem  21515  hladdid  21590
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-1st 6206  df-2nd 6207  df-riota 6388  df-grpo 20964  df-gid 20965  df-ablo 21055  df-vc 21210  df-nv 21256  df-va 21259  df-ba 21260  df-sm 21261  df-0v 21262  df-nmcv 21264
  Copyright terms: Public domain W3C validator