MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvablo Unicode version

Theorem nvablo 22052
Description: The vector addition operation of a normed complex vector space is an Abelian group. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
nvabl.1  |-  G  =  ( +v `  U
)
Assertion
Ref Expression
nvablo  |-  ( U  e.  NrmCVec  ->  G  e.  AbelOp )

Proof of Theorem nvablo
StepHypRef Expression
1 eqid 2408 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 22051 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 nvabl.1 . . . 4  |-  G  =  ( +v `  U
)
43vafval 22039 . . 3  |-  G  =  ( 1st `  ( 1st `  U ) )
54vcablo 21993 . 2  |-  ( ( 1st `  U )  e.  CVec OLD  ->  G  e. 
AbelOp )
62, 5syl 16 1  |-  ( U  e.  NrmCVec  ->  G  e.  AbelOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   ` cfv 5417   1stc1st 6310   AbelOpcablo 21826   CVec
OLDcvc 21981   NrmCVeccnv 22020   +vcpv 22021
This theorem is referenced by:  nvgrp  22053  nvcom  22057  nvadd32  22060  nvadd4  22063  nvnnncan1  22086  nvaddsub  22097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-1st 6312  df-2nd 6313  df-vc 21982  df-nv 22028  df-va 22031  df-ba 22032  df-sm 22033  df-0v 22034  df-nmcv 22036
  Copyright terms: Public domain W3C validator