MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvadd12 Structured version   Unicode version

Theorem nvadd12 22095
Description: Commutative/associative law for vector addition. (Contributed by NM, 14-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgcl.1  |-  X  =  ( BaseSet `  U )
nvgcl.2  |-  G  =  ( +v `  U
)
Assertion
Ref Expression
nvadd12  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( B G C ) )  =  ( B G ( A G C ) ) )

Proof of Theorem nvadd12
StepHypRef Expression
1 nvgcl.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvgcl.2 . . . . 5  |-  G  =  ( +v `  U
)
31, 2nvcom 22093 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  =  ( B G A ) )
433adant3r3 1164 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G B )  =  ( B G A ) )
54oveq1d 6089 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( B G A ) G C ) )
61, 2nvass 22094 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( A G ( B G C ) ) )
7 3ancoma 943 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( B  e.  X  /\  A  e.  X  /\  C  e.  X )
)
81, 2nvass 22094 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( B  e.  X  /\  A  e.  X  /\  C  e.  X )
)  ->  ( ( B G A ) G C )  =  ( B G ( A G C ) ) )
97, 8sylan2b 462 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( B G A ) G C )  =  ( B G ( A G C ) ) )
105, 6, 93eqtr3d 2476 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( B G C ) )  =  ( B G ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5447  (class class class)co 6074   NrmCVeccnv 22056   +vcpv 22057   BaseSetcba 22058
This theorem is referenced by:  nvsubadd  22129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-iun 4088  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-1st 6342  df-2nd 6343  df-grpo 21772  df-ablo 21863  df-vc 22018  df-nv 22064  df-va 22067  df-ba 22068  df-sm 22069  df-0v 22070  df-nmcv 22072
  Copyright terms: Public domain W3C validator