MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvaddsub4 Unicode version

Theorem nvaddsub4 21235
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 8-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvsubadd.1  |-  X  =  ( BaseSet `  U )
nvsubadd.2  |-  G  =  ( +v `  U
)
nvsubadd.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
nvaddsub4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) M ( C G D ) )  =  ( ( A M C ) G ( B M D ) ) )

Proof of Theorem nvaddsub4
StepHypRef Expression
1 neg1cn 9829 . . . . . 6  |-  -u 1  e.  CC
2 nvsubadd.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
3 nvsubadd.2 . . . . . . 7  |-  G  =  ( +v `  U
)
4 eqid 2296 . . . . . . 7  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
52, 3, 4nvdi 21204 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( -u 1  e.  CC  /\  C  e.  X  /\  D  e.  X )
)  ->  ( -u 1
( .s OLD `  U
) ( C G D ) )  =  ( ( -u 1
( .s OLD `  U
) C ) G ( -u 1 ( .s OLD `  U
) D ) ) )
61, 5mp3anr1 1274 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  D  e.  X )
)  ->  ( -u 1
( .s OLD `  U
) ( C G D ) )  =  ( ( -u 1
( .s OLD `  U
) C ) G ( -u 1 ( .s OLD `  U
) D ) ) )
763adant2 974 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  ( -u 1 ( .s OLD `  U ) ( C G D ) )  =  ( ( -u
1 ( .s OLD `  U ) C ) G ( -u 1
( .s OLD `  U
) D ) ) )
87oveq2d 5890 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( -u
1 ( .s OLD `  U ) ( C G D ) ) )  =  ( ( A G B ) G ( ( -u
1 ( .s OLD `  U ) C ) G ( -u 1
( .s OLD `  U
) D ) ) ) )
92, 4nvscl 21200 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  C  e.  X )  ->  ( -u 1 ( .s OLD `  U ) C )  e.  X )
101, 9mp3an2 1265 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  C  e.  X )  ->  ( -u 1 ( .s OLD `  U ) C )  e.  X )
112, 4nvscl 21200 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  D  e.  X )  ->  ( -u 1 ( .s OLD `  U ) D )  e.  X )
121, 11mp3an2 1265 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  D  e.  X )  ->  ( -u 1 ( .s OLD `  U ) D )  e.  X )
1310, 12anim12dan 810 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  D  e.  X )
)  ->  ( ( -u 1 ( .s OLD `  U ) C )  e.  X  /\  ( -u 1 ( .s OLD `  U ) D )  e.  X ) )
14133adant2 974 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( -u 1 ( .s
OLD `  U ) C )  e.  X  /\  ( -u 1 ( .s OLD `  U
) D )  e.  X ) )
152, 3nvadd4 21199 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( ( -u 1
( .s OLD `  U
) C )  e.  X  /\  ( -u
1 ( .s OLD `  U ) D )  e.  X ) )  ->  ( ( A G B ) G ( ( -u 1
( .s OLD `  U
) C ) G ( -u 1 ( .s OLD `  U
) D ) ) )  =  ( ( A G ( -u
1 ( .s OLD `  U ) C ) ) G ( B G ( -u 1
( .s OLD `  U
) D ) ) ) )
1614, 15syld3an3 1227 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( (
-u 1 ( .s
OLD `  U ) C ) G (
-u 1 ( .s
OLD `  U ) D ) ) )  =  ( ( A G ( -u 1
( .s OLD `  U
) C ) ) G ( B G ( -u 1 ( .s OLD `  U
) D ) ) ) )
178, 16eqtrd 2328 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( -u
1 ( .s OLD `  U ) ( C G D ) ) )  =  ( ( A G ( -u
1 ( .s OLD `  U ) C ) ) G ( B G ( -u 1
( .s OLD `  U
) D ) ) ) )
18 simp1 955 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  U  e.  NrmCVec )
192, 3nvgcl 21192 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
20193expb 1152 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  X
)
21203adant3 975 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  ( A G B )  e.  X )
222, 3nvgcl 21192 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  C  e.  X  /\  D  e.  X )  ->  ( C G D )  e.  X )
23223expb 1152 . . . 4  |-  ( ( U  e.  NrmCVec  /\  ( C  e.  X  /\  D  e.  X )
)  ->  ( C G D )  e.  X
)
24233adant2 974 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  ( C G D )  e.  X )
25 nvsubadd.3 . . . 4  |-  M  =  ( -v `  U
)
262, 3, 4, 25nvmval 21216 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A G B )  e.  X  /\  ( C G D )  e.  X )  ->  (
( A G B ) M ( C G D ) )  =  ( ( A G B ) G ( -u 1 ( .s OLD `  U
) ( C G D ) ) ) )
2718, 21, 24, 26syl3anc 1182 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) M ( C G D ) )  =  ( ( A G B ) G ( -u 1 ( .s OLD `  U
) ( C G D ) ) ) )
282, 3, 4, 25nvmval 21216 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  C  e.  X )  ->  ( A M C )  =  ( A G (
-u 1 ( .s
OLD `  U ) C ) ) )
29283adant3r 1179 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( C  e.  X  /\  D  e.  X )
)  ->  ( A M C )  =  ( A G ( -u
1 ( .s OLD `  U ) C ) ) )
30293adant2r 1177 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  ( A M C )  =  ( A G (
-u 1 ( .s
OLD `  U ) C ) ) )
312, 3, 4, 25nvmval 21216 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  D  e.  X )  ->  ( B M D )  =  ( B G (
-u 1 ( .s
OLD `  U ) D ) ) )
32313adant3l 1178 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X  /\  ( C  e.  X  /\  D  e.  X )
)  ->  ( B M D )  =  ( B G ( -u
1 ( .s OLD `  U ) D ) ) )
33323adant2l 1176 . . 3  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  ( B M D )  =  ( B G (
-u 1 ( .s
OLD `  U ) D ) ) )
3430, 33oveq12d 5892 . 2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A M C ) G ( B M D ) )  =  ( ( A G ( -u 1
( .s OLD `  U
) C ) ) G ( B G ( -u 1 ( .s OLD `  U
) D ) ) ) )
3517, 27, 343eqtr4d 2338 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) M ( C G D ) )  =  ( ( A M C ) G ( B M D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751   1c1 8754   -ucneg 9054   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   -vcnsb 21161
This theorem is referenced by:  vacn  21283  minvecolem2  21470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055  df-neg 9056  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172
  Copyright terms: Public domain W3C validator