MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmtri Unicode version

Theorem nvmtri 21237
Description: Triangle inequality for the norm of a vector difference. (Contributed by NM, 27-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmtri.1  |-  X  =  ( BaseSet `  U )
nvmtri.3  |-  M  =  ( -v `  U
)
nvmtri.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvmtri  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A M B ) )  <_ 
( ( N `  A )  +  ( N `  B ) ) )

Proof of Theorem nvmtri
StepHypRef Expression
1 neg1cn 9813 . . . . 5  |-  -u 1  e.  CC
2 nvmtri.1 . . . . . 6  |-  X  =  ( BaseSet `  U )
3 eqid 2283 . . . . . 6  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
42, 3nvscl 21184 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( -u 1 ( .s OLD `  U ) B )  e.  X )
51, 4mp3an2 1265 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( -u 1 ( .s OLD `  U ) B )  e.  X )
653adant2 974 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( -u 1 ( .s OLD `  U ) B )  e.  X )
7 eqid 2283 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
8 nvmtri.6 . . . 4  |-  N  =  ( normCV `  U )
92, 7, 8nvtri 21236 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  ( -u 1 ( .s OLD `  U ) B )  e.  X )  -> 
( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) )  <_  (
( N `  A
)  +  ( N `
 ( -u 1
( .s OLD `  U
) B ) ) ) )
106, 9syld3an3 1227 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A
( +v `  U
) ( -u 1
( .s OLD `  U
) B ) ) )  <_  ( ( N `  A )  +  ( N `  ( -u 1 ( .s
OLD `  U ) B ) ) ) )
11 nvmtri.3 . . . 4  |-  M  =  ( -v `  U
)
122, 7, 3, 11nvmval 21200 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( A M B )  =  ( A ( +v
`  U ) (
-u 1 ( .s
OLD `  U ) B ) ) )
1312fveq2d 5529 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A M B ) )  =  ( N `  ( A ( +v `  U ) ( -u
1 ( .s OLD `  U ) B ) ) ) )
142, 3, 8nvs 21228 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC  /\  B  e.  X )  ->  ( N `  ( -u 1
( .s OLD `  U
) B ) )  =  ( ( abs `  -u 1 )  x.  ( N `  B
) ) )
151, 14mp3an2 1265 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( N `  ( -u 1
( .s OLD `  U
) B ) )  =  ( ( abs `  -u 1 )  x.  ( N `  B
) ) )
16 ax-1cn 8795 . . . . . . . . 9  |-  1  e.  CC
1716absnegi 11883 . . . . . . . 8  |-  ( abs `  -u 1 )  =  ( abs `  1
)
18 abs1 11782 . . . . . . . 8  |-  ( abs `  1 )  =  1
1917, 18eqtri 2303 . . . . . . 7  |-  ( abs `  -u 1 )  =  1
2019oveq1i 5868 . . . . . 6  |-  ( ( abs `  -u 1
)  x.  ( N `
 B ) )  =  ( 1  x.  ( N `  B
) )
212, 8nvcl 21225 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( N `  B )  e.  RR )
2221recnd 8861 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( N `  B )  e.  CC )
2322mulid2d 8853 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
1  x.  ( N `
 B ) )  =  ( N `  B ) )
2420, 23syl5eq 2327 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  (
( abs `  -u 1
)  x.  ( N `
 B ) )  =  ( N `  B ) )
2515, 24eqtr2d 2316 . . . 4  |-  ( ( U  e.  NrmCVec  /\  B  e.  X )  ->  ( N `  B )  =  ( N `  ( -u 1 ( .s
OLD `  U ) B ) ) )
26253adant2 974 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  B )  =  ( N `  ( -u 1 ( .s
OLD `  U ) B ) ) )
2726oveq2d 5874 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  (
( N `  A
)  +  ( N `
 B ) )  =  ( ( N `
 A )  +  ( N `  ( -u 1 ( .s OLD `  U ) B ) ) ) )
2810, 13, 273brtr4d 4053 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A M B ) )  <_ 
( ( N `  A )  +  ( N `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   1c1 8738    + caddc 8740    x. cmul 8742    <_ cle 8868   -ucneg 9038   abscabs 11719   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   .s
OLDcns 21143   -vcnsb 21145   normCVcnmcv 21146
This theorem is referenced by:  ubthlem2  21450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156
  Copyright terms: Public domain W3C validator