MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnnncan2 Unicode version

Theorem nvnnncan2 22091
Description: Cancellation law for vector subtraction. (nnncan2 9302 analog.) (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmf.1  |-  X  =  ( BaseSet `  U )
nvmf.3  |-  M  =  ( -v `  U
)
Assertion
Ref Expression
nvnnncan2  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )

Proof of Theorem nvnnncan2
StepHypRef Expression
1 eqid 2412 . . 3  |-  ( +v
`  U )  =  ( +v `  U
)
21nvgrp 22057 . 2  |-  ( U  e.  NrmCVec  ->  ( +v `  U )  e.  GrpOp )
3 nvmf.1 . . . 4  |-  X  =  ( BaseSet `  U )
43, 1bafval 22044 . . 3  |-  X  =  ran  ( +v `  U )
5 nvmf.3 . . . 4  |-  M  =  ( -v `  U
)
61, 5vsfval 22075 . . 3  |-  M  =  (  /g  `  ( +v `  U ) )
74, 6grponnncan2 21803 . 2  |-  ( ( ( +v `  U
)  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
82, 7sylan 458 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A M C ) M ( B M C ) )  =  ( A M B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5421  (class class class)co 6048   GrpOpcgr 21735   NrmCVeccnv 22024   +vcpv 22025   BaseSetcba 22026   -vcnsb 22029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-grpo 21740  df-gid 21741  df-ginv 21742  df-gdiv 21743  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-vs 22039  df-nmcv 22040
  Copyright terms: Public domain W3C validator