MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsass Unicode version

Theorem nvsass 21958
Description: Associative law for the scalar product of a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1  |-  X  =  ( BaseSet `  U )
nvscl.4  |-  S  =  ( .s OLD `  U
)
Assertion
Ref Expression
nvsass  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  X ) )  -> 
( ( A  x.  B ) S C )  =  ( A S ( B S C ) ) )

Proof of Theorem nvsass
StepHypRef Expression
1 eqid 2388 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 21943 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 eqid 2388 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 21931 . . 3  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nvscl.4 . . . 4  |-  S  =  ( .s OLD `  U
)
65smfval 21933 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvscl.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 21932 . . 3  |-  X  =  ran  ( +v `  U )
94, 6, 8vcass 21882 . 2  |-  ( ( ( 1st `  U
)  e.  CVec OLD  /\  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  X )
)  ->  ( ( A  x.  B ) S C )  =  ( A S ( B S C ) ) )
102, 9sylan 458 1  |-  ( ( U  e.  NrmCVec  /\  ( A  e.  CC  /\  B  e.  CC  /\  C  e.  X ) )  -> 
( ( A  x.  B ) S C )  =  ( A S ( B S C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   ` cfv 5395  (class class class)co 6021   1stc1st 6287   CCcc 8922    x. cmul 8929   CVec OLDcvc 21873   NrmCVeccnv 21912   +vcpv 21913   BaseSetcba 21914   .s
OLDcns 21915
This theorem is referenced by:  nvscom  21959  nvmul0or  21982  nvnncan  21993  nvpi  22004  smcnlem  22042  ipval3  22054  ipdirilem  22179  ipasslem2  22182  ipasslem4  22184  ipasslem5  22185  ipasslem10  22189  ipasslem11  22190  minvecolem2  22226  hlmulass  22257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-1st 6289  df-2nd 6290  df-vc 21874  df-nv 21920  df-va 21923  df-ba 21924  df-sm 21925  df-0v 21926  df-nmcv 21928
  Copyright terms: Public domain W3C validator