MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsf Unicode version

Theorem nvsf 21191
Description: Mapping for the scalar multiplication operation. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvsf.1  |-  X  =  ( BaseSet `  U )
nvsf.4  |-  S  =  ( .s OLD `  U
)
Assertion
Ref Expression
nvsf  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )

Proof of Theorem nvsf
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 21187 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 eqid 2296 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 21175 . . 3  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nvsf.4 . . . 4  |-  S  =  ( .s OLD `  U
)
65smfval 21177 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvsf.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 21176 . . 3  |-  X  =  ran  ( +v `  U )
94, 6, 8vcsm 21121 . 2  |-  ( ( 1st `  U )  e.  CVec OLD  ->  S :
( CC  X.  X
) --> X )
102, 9syl 15 1  |-  ( U  e.  NrmCVec  ->  S : ( CC  X.  X ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696    X. cxp 4703   -->wf 5267   ` cfv 5271   1stc1st 6136   CCcc 8751   CVec OLDcvc 21117   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159
This theorem is referenced by:  nvinvfval  21214  smcnlem  21286  ssps  21322  hlmulf  21499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator