MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsid Unicode version

Theorem nvsid 21201
Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvscl.1  |-  X  =  ( BaseSet `  U )
nvscl.4  |-  S  =  ( .s OLD `  U
)
Assertion
Ref Expression
nvsid  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )

Proof of Theorem nvsid
StepHypRef Expression
1 eqid 2296 . . 3  |-  ( 1st `  U )  =  ( 1st `  U )
21nvvc 21187 . 2  |-  ( U  e.  NrmCVec  ->  ( 1st `  U
)  e.  CVec OLD )
3 eqid 2296 . . . 4  |-  ( +v
`  U )  =  ( +v `  U
)
43vafval 21175 . . 3  |-  ( +v
`  U )  =  ( 1st `  ( 1st `  U ) )
5 nvscl.4 . . . 4  |-  S  =  ( .s OLD `  U
)
65smfval 21177 . . 3  |-  S  =  ( 2nd `  ( 1st `  U ) )
7 nvscl.1 . . . 4  |-  X  =  ( BaseSet `  U )
87, 3bafval 21176 . . 3  |-  X  =  ran  ( +v `  U )
94, 6, 8vcid 21123 . 2  |-  ( ( ( 1st `  U
)  e.  CVec OLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
102, 9sylan 457 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  (
1 S A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   1stc1st 6136   1c1 8754   CVec OLDcvc 21117   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159
This theorem is referenced by:  nvmul0or  21226  nvnncan  21237  nvpi  21248  nvge0  21256  ipval2lem3  21294  ipval2  21296  ipval2lem6  21300  ipidsq  21302  lnoadd  21352  ip1ilem  21420  ip2i  21422  ipdirilem  21423  ipasslem1  21425  ipasslem4  21428  ipasslem10  21433  minvecolem2  21470  hlmulid  21500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator