MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvss Unicode version

Theorem nvss 21583
Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 1-May-2015.) (New usage is discouraged.)
Assertion
Ref Expression
nvss  |-  NrmCVec  C_  ( CVec OLD  X.  _V )

Proof of Theorem nvss
Dummy variables  g 
s  n  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2426 . . . . . . 7  |-  ( w  =  <. g ,  s
>.  ->  ( w  e. 
CVec OLD  <->  <. g ,  s
>.  e.  CVec OLD ) )
21biimpar 471 . . . . . 6  |-  ( ( w  =  <. g ,  s >.  /\  <. g ,  s >.  e.  CVec OLD )  ->  w  e.  CVec
OLD )
323ad2antr1 1121 . . . . 5  |-  ( ( w  =  <. g ,  s >.  /\  ( <. g ,  s >.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) )  ->  w  e.  CVec OLD )
43exlimivv 1640 . . . 4  |-  ( E. g E. s ( w  =  <. g ,  s >.  /\  ( <. g ,  s >.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) )  ->  w  e.  CVec OLD )
5 vex 2876 . . . 4  |-  n  e. 
_V
64, 5jctir 524 . . 3  |-  ( E. g E. s ( w  =  <. g ,  s >.  /\  ( <. g ,  s >.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) )  ->  ( w  e. 
CVec OLD  /\  n  e. 
_V ) )
76ssopab2i 4395 . 2  |-  { <. w ,  n >.  |  E. g E. s ( w  =  <. g ,  s
>.  /\  ( <. g ,  s >.  e.  CVec OLD 
/\  n : ran  g
--> RR  /\  A. x  e.  ran  g ( ( ( n `  x
)  =  0  ->  x  =  (GId `  g
) )  /\  A. y  e.  CC  (
n `  ( y
s x ) )  =  ( ( abs `  y )  x.  (
n `  x )
)  /\  A. y  e.  ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) ) }  C_  { <. w ,  n >.  |  (
w  e.  CVec OLD  /\  n  e.  _V ) }
8 df-nv 21582 . . 3  |-  NrmCVec  =  { <. <. g ,  s
>. ,  n >.  |  ( <. g ,  s
>.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) }
9 dfoprab2 6021 . . 3  |-  { <. <.
g ,  s >. ,  n >.  |  ( <. g ,  s >.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) }  =  { <. w ,  n >.  |  E. g E. s ( w  =  <. g ,  s
>.  /\  ( <. g ,  s >.  e.  CVec OLD 
/\  n : ran  g
--> RR  /\  A. x  e.  ran  g ( ( ( n `  x
)  =  0  ->  x  =  (GId `  g
) )  /\  A. y  e.  CC  (
n `  ( y
s x ) )  =  ( ( abs `  y )  x.  (
n `  x )
)  /\  A. y  e.  ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) ) }
108, 9eqtri 2386 . 2  |-  NrmCVec  =  { <. w ,  n >.  |  E. g E. s
( w  =  <. g ,  s >.  /\  ( <. g ,  s >.  e.  CVec OLD  /\  n : ran  g --> RR  /\  A. x  e.  ran  g
( ( ( n `
 x )  =  0  ->  x  =  (GId `  g ) )  /\  A. y  e.  CC  ( n `  ( y s x ) )  =  ( ( abs `  y
)  x.  ( n `
 x ) )  /\  A. y  e. 
ran  g ( n `
 ( x g y ) )  <_ 
( ( n `  x )  +  ( n `  y ) ) ) ) ) }
11 df-xp 4798 . 2  |-  ( CVec
OLD  X.  _V )  =  { <. w ,  n >.  |  ( w  e. 
CVec OLD  /\  n  e. 
_V ) }
127, 10, 113sstr4i 3303 1  |-  NrmCVec  C_  ( CVec OLD  X.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935   E.wex 1546    = wceq 1647    e. wcel 1715   A.wral 2628   _Vcvv 2873    C_ wss 3238   <.cop 3732   class class class wbr 4125   {copab 4178    X. cxp 4790   ran crn 4793   -->wf 5354   ` cfv 5358  (class class class)co 5981   {coprab 5982   CCcc 8882   RRcr 8883   0cc0 8884    + caddc 8887    x. cmul 8889    <_ cle 9015   abscabs 11926  GIdcgi 21286   CVec OLDcvc 21535   NrmCVeccnv 21574
This theorem is referenced by:  nvvcop  21584  nvrel  21592  nvvop  21599  nvex  21601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-opab 4180  df-xp 4798  df-oprab 5985  df-nv 21582
  Copyright terms: Public domain W3C validator