MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvtri Unicode version

Theorem nvtri 21252
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvtri.1  |-  X  =  ( BaseSet `  U )
nvtri.2  |-  G  =  ( +v `  U
)
nvtri.6  |-  N  =  ( normCV `  U )
Assertion
Ref Expression
nvtri  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  <_ 
( ( N `  A )  +  ( N `  B ) ) )

Proof of Theorem nvtri
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nvtri.1 . . . . . . 7  |-  X  =  ( BaseSet `  U )
2 nvtri.2 . . . . . . 7  |-  G  =  ( +v `  U
)
3 eqid 2296 . . . . . . . . 9  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
43smfval 21177 . . . . . . . 8  |-  ( .s
OLD `  U )  =  ( 2nd `  ( 1st `  U ) )
54eqcomi 2300 . . . . . . 7  |-  ( 2nd `  ( 1st `  U
) )  =  ( .s OLD `  U
)
6 eqid 2296 . . . . . . 7  |-  ( 0vec `  U )  =  (
0vec `  U )
7 nvtri.6 . . . . . . 7  |-  N  =  ( normCV `  U )
81, 2, 5, 6, 7nvi 21186 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( <. G , 
( 2nd `  ( 1st `  U ) )
>.  e.  CVec OLD  /\  N : X
--> RR  /\  A. x  e.  X  ( (
( N `  x
)  =  0  ->  x  =  ( 0vec `  U ) )  /\  A. y  e.  CC  ( N `  ( y
( 2nd `  ( 1st `  U ) ) x ) )  =  ( ( abs `  y
)  x.  ( N `
 x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) ) ) ) )
98simp3d 969 . . . . 5  |-  ( U  e.  NrmCVec  ->  A. x  e.  X  ( ( ( N `
 x )  =  0  ->  x  =  ( 0vec `  U )
)  /\  A. y  e.  CC  ( N `  ( y ( 2nd `  ( 1st `  U
) ) x ) )  =  ( ( abs `  y )  x.  ( N `  x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) ) )
10 simp3 957 . . . . . 6  |-  ( ( ( ( N `  x )  =  0  ->  x  =  (
0vec `  U )
)  /\  A. y  e.  CC  ( N `  ( y ( 2nd `  ( 1st `  U
) ) x ) )  =  ( ( abs `  y )  x.  ( N `  x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  ->  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )
1110ralimi 2631 . . . . 5  |-  ( A. x  e.  X  (
( ( N `  x )  =  0  ->  x  =  (
0vec `  U )
)  /\  A. y  e.  CC  ( N `  ( y ( 2nd `  ( 1st `  U
) ) x ) )  =  ( ( abs `  y )  x.  ( N `  x ) )  /\  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )  ->  A. x  e.  X  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )
129, 11syl 15 . . . 4  |-  ( U  e.  NrmCVec  ->  A. x  e.  X  A. y  e.  X  ( N `  ( x G y ) )  <_  ( ( N `
 x )  +  ( N `  y
) ) )
13 oveq1 5881 . . . . . . 7  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
1413fveq2d 5545 . . . . . 6  |-  ( x  =  A  ->  ( N `  ( x G y ) )  =  ( N `  ( A G y ) ) )
15 fveq2 5541 . . . . . . 7  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
1615oveq1d 5889 . . . . . 6  |-  ( x  =  A  ->  (
( N `  x
)  +  ( N `
 y ) )  =  ( ( N `
 A )  +  ( N `  y
) ) )
1714, 16breq12d 4052 . . . . 5  |-  ( x  =  A  ->  (
( N `  (
x G y ) )  <_  ( ( N `  x )  +  ( N `  y ) )  <->  ( N `  ( A G y ) )  <_  (
( N `  A
)  +  ( N `
 y ) ) ) )
18 oveq2 5882 . . . . . . 7  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
1918fveq2d 5545 . . . . . 6  |-  ( y  =  B  ->  ( N `  ( A G y ) )  =  ( N `  ( A G B ) ) )
20 fveq2 5541 . . . . . . 7  |-  ( y  =  B  ->  ( N `  y )  =  ( N `  B ) )
2120oveq2d 5890 . . . . . 6  |-  ( y  =  B  ->  (
( N `  A
)  +  ( N `
 y ) )  =  ( ( N `
 A )  +  ( N `  B
) ) )
2219, 21breq12d 4052 . . . . 5  |-  ( y  =  B  ->  (
( N `  ( A G y ) )  <_  ( ( N `
 A )  +  ( N `  y
) )  <->  ( N `  ( A G B ) )  <_  (
( N `  A
)  +  ( N `
 B ) ) ) )
2317, 22rspc2v 2903 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( N `  ( x G y ) )  <_  (
( N `  x
)  +  ( N `
 y ) )  ->  ( N `  ( A G B ) )  <_  ( ( N `  A )  +  ( N `  B ) ) ) )
2412, 23syl5 28 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( U  e.  NrmCVec  -> 
( N `  ( A G B ) )  <_  ( ( N `
 A )  +  ( N `  B
) ) ) )
25243impia 1148 . 2  |-  ( ( A  e.  X  /\  B  e.  X  /\  U  e.  NrmCVec )  -> 
( N `  ( A G B ) )  <_  ( ( N `
 A )  +  ( N `  B
) ) )
26253comr 1159 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  B  e.  X )  ->  ( N `  ( A G B ) )  <_ 
( ( N `  A )  +  ( N `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   class class class wbr 4039   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   CCcc 8751   RRcr 8752   0cc0 8753    + caddc 8756    x. cmul 8758    <_ cle 8884   abscabs 11735   CVec
OLDcvc 21117   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   0veccn0v 21160   normCVcnmcv 21162
This theorem is referenced by:  nvmtri  21253  nvmtri2  21254  nvabs  21255  nvge0  21256  imsmetlem  21275  vacn  21283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172
  Copyright terms: Public domain W3C validator