MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvzcl Unicode version

Theorem nvzcl 21192
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvzcl.1  |-  X  =  ( BaseSet `  U )
nvzcl.6  |-  Z  =  ( 0vec `  U
)
Assertion
Ref Expression
nvzcl  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)

Proof of Theorem nvzcl
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( +v
`  U )  =  ( +v `  U
)
2 nvzcl.6 . . 3  |-  Z  =  ( 0vec `  U
)
31, 20vfval 21162 . 2  |-  ( U  e.  NrmCVec  ->  Z  =  (GId
`  ( +v `  U ) ) )
41nvgrp 21173 . . 3  |-  ( U  e.  NrmCVec  ->  ( +v `  U )  e.  GrpOp )
5 nvzcl.1 . . . . 5  |-  X  =  ( BaseSet `  U )
65, 1bafval 21160 . . . 4  |-  X  =  ran  ( +v `  U )
7 eqid 2283 . . . 4  |-  (GId `  ( +v `  U ) )  =  (GId `  ( +v `  U ) )
86, 7grpoidcl 20884 . . 3  |-  ( ( +v `  U )  e.  GrpOp  ->  (GId `  ( +v `  U ) )  e.  X )
94, 8syl 15 . 2  |-  ( U  e.  NrmCVec  ->  (GId `  ( +v `  U ) )  e.  X )
103, 9eqeltrd 2357 1  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   ` cfv 5255   GrpOpcgr 20853  GIdcgi 20854   NrmCVeccnv 21140   +vcpv 21141   BaseSetcba 21142   0veccn0v 21144
This theorem is referenced by:  nvzs  21203  nvmeq0  21222  nvz0  21234  elimnv  21252  nvnd  21257  imsmetlem  21259  nvlmle  21265  dip0r  21293  dip0l  21294  sspz  21311  lno0  21334  lnomul  21338  nvo00  21339  nmosetn0  21343  nmooge0  21345  0oo  21367  0lno  21368  nmoo0  21369  blocni  21383  ubthlem1  21449  minvecolem1  21453  hl0cl  21481  hhshsslem2  21845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-nmcv 21156
  Copyright terms: Public domain W3C validator