MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1bdd Unicode version

Theorem o1bdd 12101
Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1bdd  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( abs `  ( F `
 y ) )  <_  m ) )
Distinct variable groups:    x, m, y, A    m, F, x, y

Proof of Theorem o1bdd
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  F  e.  O (
1 ) )
2 simpr 447 . . 3  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  F : A --> CC )
3 fdm 5476 . . . . 5  |-  ( F : A --> CC  ->  dom 
F  =  A )
43adantl 452 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  dom  F  =  A )
5 o1dm 12100 . . . . 5  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
65adantr 451 . . . 4  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  dom  F  C_  RR )
74, 6eqsstr3d 3289 . . 3  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  A  C_  RR )
8 elo12 12097 . . 3  |-  ( ( F : A --> CC  /\  A  C_  RR )  -> 
( F  e.  O
( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
92, 7, 8syl2anc 642 . 2  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  -> 
( F  e.  O
( 1 )  <->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  ( x  <_ 
y  ->  ( abs `  ( F `  y
) )  <_  m
) ) )
101, 9mpbid 201 1  |-  ( ( F  e.  O ( 1 )  /\  F : A --> CC )  ->  E. x  e.  RR  E. m  e.  RR  A. y  e.  A  (
x  <_  y  ->  ( abs `  ( F `
 y ) )  <_  m ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620    C_ wss 3228   class class class wbr 4104   dom cdm 4771   -->wf 5333   ` cfv 5337   CCcc 8825   RRcr 8826    <_ cle 8958   abscabs 11815   O ( 1 )co1 12056
This theorem is referenced by:  o1of2  12182  o1rlimmul  12188  o1cxp  20380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-pre-lttri 8901  ax-pre-lttrn 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-po 4396  df-so 4397  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-er 6747  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-ico 10754  df-o1 12060
  Copyright terms: Public domain W3C validator