MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Unicode version

Theorem o1compt 12336
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1  |-  ( ph  ->  F : A --> CC )
o1compt.2  |-  ( ph  ->  F  e.  O ( 1 ) )
o1compt.3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
o1compt.4  |-  ( ph  ->  B  C_  RR )
o1compt.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
Assertion
Ref Expression
o1compt  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O
( 1 ) )
Distinct variable groups:    x, m, y, A    B, m, x, y    C, m, x    ph, m, x, y    m, F, x
Allowed substitution hints:    C( y)    F( y)

Proof of Theorem o1compt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2  |-  ( ph  ->  F : A --> CC )
2 o1compt.2 . 2  |-  ( ph  ->  F  e.  O ( 1 ) )
3 o1compt.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
4 eqid 2404 . . 3  |-  ( y  e.  B  |->  C )  =  ( y  e.  B  |->  C )
53, 4fmptd 5852 . 2  |-  ( ph  ->  ( y  e.  B  |->  C ) : B --> A )
6 o1compt.4 . 2  |-  ( ph  ->  B  C_  RR )
7 o1compt.5 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
8 nfv 1626 . . . . . . . 8  |-  F/ y  x  <_  z
9 nfcv 2540 . . . . . . . . 9  |-  F/_ y
m
10 nfcv 2540 . . . . . . . . 9  |-  F/_ y  <_
11 nffvmpt1 5695 . . . . . . . . 9  |-  F/_ y
( ( y  e.  B  |->  C ) `  z )
129, 10, 11nfbr 4216 . . . . . . . 8  |-  F/ y  m  <_  ( (
y  e.  B  |->  C ) `  z )
138, 12nfim 1828 . . . . . . 7  |-  F/ y ( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )
14 nfv 1626 . . . . . . 7  |-  F/ z ( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )
15 breq2 4176 . . . . . . . 8  |-  ( z  =  y  ->  (
x  <_  z  <->  x  <_  y ) )
16 fveq2 5687 . . . . . . . . 9  |-  ( z  =  y  ->  (
( y  e.  B  |->  C ) `  z
)  =  ( ( y  e.  B  |->  C ) `  y ) )
1716breq2d 4184 . . . . . . . 8  |-  ( z  =  y  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  z )  <-> 
m  <_  ( (
y  e.  B  |->  C ) `  y ) ) )
1815, 17imbi12d 312 . . . . . . 7  |-  ( z  =  y  ->  (
( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )  <->  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) ) ) )
1913, 14, 18cbvral 2888 . . . . . 6  |-  ( A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  ( ( y  e.  B  |->  C ) `
 y ) ) )
20 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
214fvmpt2 5771 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  C  e.  A )  ->  ( ( y  e.  B  |->  C ) `  y )  =  C )
2220, 3, 21syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  e.  B  |->  C ) `  y
)  =  C )
2322breq2d 4184 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  y )  <-> 
m  <_  C )
)
2423imbi2d 308 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )  <->  ( x  <_ 
y  ->  m  <_  C ) ) )
2524ralbidva 2682 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2619, 25syl5bb 249 . . . . 5  |-  ( ph  ->  ( A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2726rexbidv 2687 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) ) )
2827adantr 452 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
297, 28mpbird 224 . 2  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) ) )
301, 2, 5, 6, 29o1co 12335 1  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O
( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    e. cmpt 4226    o. ccom 4841   -->wf 5409   ` cfv 5413   CCcc 8944   RRcr 8945    <_ cle 9077   O ( 1 )co1 12235
This theorem is referenced by:  dchrisum0  21167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-pre-lttri 9020  ax-pre-lttrn 9021
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-po 4463  df-so 4464  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-er 6864  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-ico 10878  df-o1 12239
  Copyright terms: Public domain W3C validator