MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1dm Unicode version

Theorem o1dm 12020
Description: An eventually bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
o1dm  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )

Proof of Theorem o1dm
Dummy variables  x  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elo1 12016 . . 3  |-  ( F  e.  O ( 1 )  <->  ( F  e.  ( CC  ^pm  RR )  /\  E. x  e.  RR  E. m  e.  RR  A. y  e.  ( dom  F  i^i  ( x [,)  +oo ) ) ( abs `  ( F `  y
) )  <_  m
) )
21simplbi 446 . 2  |-  ( F  e.  O ( 1 )  ->  F  e.  ( CC  ^pm  RR ) )
3 cnex 8834 . . . 4  |-  CC  e.  _V
4 reex 8844 . . . 4  |-  RR  e.  _V
53, 4elpm2 6815 . . 3  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
65simprbi 450 . 2  |-  ( F  e.  ( CC  ^pm  RR )  ->  dom  F  C_  RR )
72, 6syl 15 1  |-  ( F  e.  O ( 1 )  ->  dom  F  C_  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164    C_ wss 3165   class class class wbr 4039   dom cdm 4705   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   RRcr 8752    +oocpnf 8880    <_ cle 8884   [,)cico 10674   abscabs 11735   O (
1 )co1 11976
This theorem is referenced by:  o1bdd  12021  lo1o1  12022  o1lo1  12027  o1lo12  12028  o1co  12076  o1of2  12102  o1rlimmul  12108  o1add2  12113  o1mul2  12114  o1sub2  12115  o1dif  12119  o1cxp  20285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-pm 6791  df-o1 11980
  Copyright terms: Public domain W3C validator