MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1fsum Structured version   Unicode version

Theorem o1fsum 12594
Description: If  A
( k ) is O(1), then  sum_ k  <_  x ,  A ( k ) is O( x). (Contributed by Mario Carneiro, 23-May-2016.)
Hypotheses
Ref Expression
o1fsum.1  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  V )
o1fsum.2  |-  ( ph  ->  ( k  e.  NN  |->  A )  e.  O
( 1 ) )
Assertion
Ref Expression
o1fsum  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) A  /  x ) )  e.  O ( 1 ) )
Distinct variable groups:    x, A    x, k, ph
Allowed substitution hints:    A( k)    V( x, k)

Proof of Theorem o1fsum
Dummy variables  m  c  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1fsum.2 . . 3  |-  ( ph  ->  ( k  e.  NN  |->  A )  e.  O
( 1 ) )
2 nnssre 10006 . . . . 5  |-  NN  C_  RR
32a1i 11 . . . 4  |-  ( ph  ->  NN  C_  RR )
4 o1fsum.1 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  V )
54, 1o1mptrcl 12418 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  A  e.  CC )
6 1re 9092 . . . . 5  |-  1  e.  RR
76a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR )
83, 5, 7elo1mpt2 12331 . . 3  |-  ( ph  ->  ( ( k  e.  NN  |->  A )  e.  O ( 1 )  <->  E. c  e.  (
1 [,)  +oo ) E. m  e.  RR  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) ) )
91, 8mpbid 203 . 2  |-  ( ph  ->  E. c  e.  ( 1 [,)  +oo ) E. m  e.  RR  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )
10 rpssre 10624 . . . . . 6  |-  RR+  C_  RR
1110a1i 11 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  RR+  C_  RR )
12 nfcv 2574 . . . . . . . 8  |-  F/_ n A
13 nfcsb1v 3285 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ A
14 csbeq1a 3261 . . . . . . . 8  |-  ( k  =  n  ->  A  =  [_ n  /  k ]_ A )
1512, 13, 14cbvsumi 12493 . . . . . . 7  |-  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  =  sum_ n  e.  ( 1 ... ( |_ `  x ) )
[_ n  /  k ]_ A
16 fzfid 11314 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  ( 1 ... ( |_ `  x
) )  e.  Fin )
17 o1f 12325 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  |->  A )  e.  O ( 1 )  ->  (
k  e.  NN  |->  A ) : dom  (
k  e.  NN  |->  A ) --> CC )
181, 17syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  NN  |->  A ) : dom  ( k  e.  NN  |->  A ) --> CC )
194ralrimiva 2791 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. k  e.  NN  A  e.  V )
20 dmmptg 5369 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN  A  e.  V  ->  dom  (
k  e.  NN  |->  A )  =  NN )
2119, 20syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( k  e.  NN  |->  A )  =  NN )
2221feq2d 5583 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( k  e.  NN  |->  A ) : dom  ( k  e.  NN  |->  A ) --> CC  <->  ( k  e.  NN  |->  A ) : NN --> CC ) )
2318, 22mpbid 203 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  NN  |->  A ) : NN --> CC )
24 eqid 2438 . . . . . . . . . . . 12  |-  ( k  e.  NN  |->  A )  =  ( k  e.  NN  |->  A )
2524fmpt 5892 . . . . . . . . . . 11  |-  ( A. k  e.  NN  A  e.  CC  <->  ( k  e.  NN  |->  A ) : NN --> CC )
2623, 25sylibr 205 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  NN  A  e.  CC )
2726ad3antrrr 712 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  A. k  e.  NN  A  e.  CC )
28 elfznn 11082 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2913nfel1 2584 . . . . . . . . . . 11  |-  F/ k
[_ n  /  k ]_ A  e.  CC
3014eleq1d 2504 . . . . . . . . . . 11  |-  ( k  =  n  ->  ( A  e.  CC  <->  [_ n  / 
k ]_ A  e.  CC ) )
3129, 30rspc 3048 . . . . . . . . . 10  |-  ( n  e.  NN  ->  ( A. k  e.  NN  A  e.  CC  ->  [_ n  /  k ]_ A  e.  CC )
)
3231impcom 421 . . . . . . . . 9  |-  ( ( A. k  e.  NN  A  e.  CC  /\  n  e.  NN )  ->  [_ n  /  k ]_ A  e.  CC )
3327, 28, 32syl2an 465 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  [_ n  / 
k ]_ A  e.  CC )
3416, 33fsumcl 12529 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_
`  x ) )
[_ n  /  k ]_ A  e.  CC )
3515, 34syl5eqel 2522 . . . . . 6  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A  e.  CC )
36 rpcn 10622 . . . . . . 7  |-  ( x  e.  RR+  ->  x  e.  CC )
3736adantl 454 . . . . . 6  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  x  e.  CC )
38 rpne0 10629 . . . . . . 7  |-  ( x  e.  RR+  ->  x  =/=  0 )
3938adantl 454 . . . . . 6  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  x  =/=  0
)
4035, 37, 39divcld 9792 . . . . 5  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x )  e.  CC )
41 simplrl 738 . . . . . . 7  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  c  e.  ( 1 [,)  +oo )
)
42 elicopnf 11002 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
c  e.  ( 1 [,)  +oo )  <->  ( c  e.  RR  /\  1  <_ 
c ) ) )
436, 42ax-mp 8 . . . . . . 7  |-  ( c  e.  ( 1 [,) 
+oo )  <->  ( c  e.  RR  /\  1  <_ 
c ) )
4441, 43sylib 190 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( c  e.  RR  /\  1  <_ 
c ) )
4544simpld 447 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  c  e.  RR )
46 fzfid 11314 . . . . . . 7  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( 1 ... ( |_ `  c
) )  e.  Fin )
4726ad2antrr 708 . . . . . . . . 9  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  A. k  e.  NN  A  e.  CC )
48 elfznn 11082 . . . . . . . . 9  |-  ( n  e.  ( 1 ... ( |_ `  c
) )  ->  n  e.  NN )
4947, 48, 32syl2an 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  ( 1 ... ( |_
`  c ) ) )  ->  [_ n  / 
k ]_ A  e.  CC )
5049abscld 12240 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  ( 1 ... ( |_
`  c ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  RR )
5146, 50fsumrecl 12530 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR )
52 simplrr 739 . . . . . 6  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  m  e.  RR )
5351, 52readdcld 9117 . . . . 5  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m )  e.  RR )
5435, 37, 39absdivd 12259 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  x  e.  RR+ )  ->  ( abs `  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x ) )  =  ( ( abs `  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A )  /  ( abs `  x ) ) )
5554adantrr 699 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x ) )  =  ( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  ( abs `  x ) ) )
56 rprege0 10628 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
5756ad2antrl 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  e.  RR  /\  0  <_  x ) )
58 absid 12103 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( abs `  x
)  =  x )
5957, 58syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  x )  =  x )
6059oveq2d 6099 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  ( abs `  x ) )  =  ( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  x ) )
6155, 60eqtrd 2470 . . . . . 6  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x ) )  =  ( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  x
) )
6235adantrr 699 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  e.  CC )
6362abscld 12240 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A )  e.  RR )
64 fzfid 11314 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
6547, 28, 32syl2an 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  [_ n  / 
k ]_ A  e.  CC )
6665adantlr 697 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  [_ n  / 
k ]_ A  e.  CC )
6766abscld 12240 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  RR )
6864, 67fsumrecl 12530 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR )
6957simpld 447 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  x  e.  RR )
7051adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR )
7152adantr 453 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  m  e.  RR )
7270, 71readdcld 9117 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m )  e.  RR )
7369, 72remulcld 9118 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  x.  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  m
) )  e.  RR )
7415fveq2i 5733 . . . . . . . . 9  |-  ( abs `  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A )  =  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x ) )
[_ n  /  k ]_ A )
7564, 66fsumabs 12582 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) )
[_ n  /  k ]_ A )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
) )
7674, 75syl5eqbr 4247 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
) )
77 fzfid 11314 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) )  e.  Fin )
78 ssun2 3513 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  c
)  +  1 ) ... ( |_ `  x ) )  C_  ( ( 1 ... ( |_ `  c
) )  u.  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) ) )
79 flge1nn 11228 . . . . . . . . . . . . . . . . . 18  |-  ( ( c  e.  RR  /\  1  <_  c )  -> 
( |_ `  c
)  e.  NN )
8044, 79syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( |_ `  c )  e.  NN )
8180adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  c )  e.  NN )
8281nnred 10017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  c )  e.  RR )
8345adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  c  e.  RR )
84 flle 11210 . . . . . . . . . . . . . . . . . 18  |-  ( c  e.  RR  ->  ( |_ `  c )  <_ 
c )
8583, 84syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  c )  <_ 
c )
86 simprr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  c  <_  x )
8782, 83, 69, 85, 86letrd 9229 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  c )  <_  x )
88 fznnfl 11245 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR  ->  (
( |_ `  c
)  e.  ( 1 ... ( |_ `  x ) )  <->  ( ( |_ `  c )  e.  NN  /\  ( |_
`  c )  <_  x ) ) )
8969, 88syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( |_ `  c
)  e.  ( 1 ... ( |_ `  x ) )  <->  ( ( |_ `  c )  e.  NN  /\  ( |_
`  c )  <_  x ) ) )
9081, 87, 89mpbir2and 890 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  c )  e.  ( 1 ... ( |_ `  x ) ) )
91 fzsplit 11079 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  c )  e.  ( 1 ... ( |_ `  x
) )  ->  (
1 ... ( |_ `  x ) )  =  ( ( 1 ... ( |_ `  c
) )  u.  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) ) ) )
9290, 91syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
1 ... ( |_ `  x ) )  =  ( ( 1 ... ( |_ `  c
) )  u.  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) ) ) )
9378, 92syl5sseqr 3399 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) ) 
C_  ( 1 ... ( |_ `  x
) ) )
9493sselda 3350 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) )  ->  n  e.  ( 1 ... ( |_ `  x ) ) )
9565abscld 12240 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  ( 1 ... ( |_
`  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  RR )
9695adantlr 697 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  RR )
9794, 96syldan 458 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  RR )
9877, 97fsumrecl 12530 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR )
9969, 70remulcld 9118 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
) )  e.  RR )
10069, 71remulcld 9118 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  x.  m )  e.  RR )
10170recnd 9116 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  CC )
102101mulid2d 9108 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
1  x.  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
) )  =  sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A ) )
1036a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  1  e.  RR )
10449absge0d 12248 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  ( 1 ... ( |_
`  c ) ) )  ->  0  <_  ( abs `  [_ n  /  k ]_ A
) )
10546, 50, 104fsumge0 12576 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  0  <_  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
) )
10651, 105jca 520 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR  /\  0  <_  sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
) ) )
107106adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR  /\  0  <_  sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
) ) )
10844simprd 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  1  <_  c
)
109108adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  1  <_  c )
110103, 83, 69, 109, 86letrd 9229 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  1  <_  x )
111 lemul1a 9866 . . . . . . . . . . . 12  |-  ( ( ( 1  e.  RR  /\  x  e.  RR  /\  ( sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  e.  RR  /\  0  <_  sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
) ) )  /\  1  <_  x )  -> 
( 1  x.  sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A ) )  <_ 
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A ) ) )
112103, 69, 107, 110, 111syl31anc 1188 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
1  x.  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
) )  <_  (
x  x.  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
) ) )
113102, 112eqbrtrrd 4236 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  <_  ( x  x.  sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
) ) )
114 hashcl 11641 . . . . . . . . . . . . 13  |-  ( ( ( ( |_ `  c )  +  1 ) ... ( |_
`  x ) )  e.  Fin  ->  ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  e. 
NN0 )
115 nn0re 10232 . . . . . . . . . . . . 13  |-  ( (
# `  ( (
( |_ `  c
)  +  1 ) ... ( |_ `  x ) ) )  e.  NN0  ->  ( # `  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) )  e.  RR )
11677, 114, 1153syl 19 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  e.  RR )
117116, 71remulcld 9118 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( # `  ( ( ( |_ `  c
)  +  1 ) ... ( |_ `  x ) ) )  x.  m )  e.  RR )
11871adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) )  ->  m  e.  RR )
119 elfzuz 11057 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) )  ->  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )
12081peano2nnd 10019 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( |_ `  c
)  +  1 )  e.  NN )
121 nnuz 10523 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
122121uztrn2 10505 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( |_ `  c )  +  1 )  e.  NN  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  n  e.  NN )
123120, 122sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  n  e.  NN )
124 simpllr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  A. k  e.  NN  ( c  <_  k  ->  ( abs `  A
)  <_  m )
)
12583adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  c  e.  RR )
126 reflcl 11207 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  RR  ->  ( |_ `  c )  e.  RR )
127 peano2re 9241 . . . . . . . . . . . . . . . . 17  |-  ( ( |_ `  c )  e.  RR  ->  (
( |_ `  c
)  +  1 )  e.  RR )
128125, 126, 1273syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  ( ( |_
`  c )  +  1 )  e.  RR )
129123nnred 10017 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  n  e.  RR )
130 fllep1 11212 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  RR  ->  c  <_  ( ( |_ `  c )  +  1 ) )
131125, 130syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  c  <_  (
( |_ `  c
)  +  1 ) )
132 eluzle 10500 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ZZ>= `  (
( |_ `  c
)  +  1 ) )  ->  ( ( |_ `  c )  +  1 )  <_  n
)
133132adantl 454 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  ( ( |_
`  c )  +  1 )  <_  n
)
134125, 128, 129, 131, 133letrd 9229 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  c  <_  n
)
135 nfv 1630 . . . . . . . . . . . . . . . . 17  |-  F/ k  c  <_  n
136 nfcv 2574 . . . . . . . . . . . . . . . . . . 19  |-  F/_ k abs
137136, 13nffv 5737 . . . . . . . . . . . . . . . . . 18  |-  F/_ k
( abs `  [_ n  /  k ]_ A
)
138 nfcv 2574 . . . . . . . . . . . . . . . . . 18  |-  F/_ k  <_
139 nfcv 2574 . . . . . . . . . . . . . . . . . 18  |-  F/_ k
m
140137, 138, 139nfbr 4258 . . . . . . . . . . . . . . . . 17  |-  F/ k ( abs `  [_ n  /  k ]_ A
)  <_  m
141135, 140nfim 1833 . . . . . . . . . . . . . . . 16  |-  F/ k ( c  <_  n  ->  ( abs `  [_ n  /  k ]_ A
)  <_  m )
142 breq2 4218 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  (
c  <_  k  <->  c  <_  n ) )
14314fveq2d 5734 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  ( abs `  A )  =  ( abs `  [_ n  /  k ]_ A
) )
144143breq1d 4224 . . . . . . . . . . . . . . . . 17  |-  ( k  =  n  ->  (
( abs `  A
)  <_  m  <->  ( abs ` 
[_ n  /  k ]_ A )  <_  m
) )
145142, 144imbi12d 313 . . . . . . . . . . . . . . . 16  |-  ( k  =  n  ->  (
( c  <_  k  ->  ( abs `  A
)  <_  m )  <->  ( c  <_  n  ->  ( abs `  [_ n  /  k ]_ A
)  <_  m )
) )
146141, 145rspc 3048 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  ( A. k  e.  NN  ( c  <_  k  ->  ( abs `  A
)  <_  m )  ->  ( c  <_  n  ->  ( abs `  [_ n  /  k ]_ A
)  <_  m )
) )
147123, 124, 134, 146syl3c 60 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  ( abs `  [_ n  /  k ]_ A
)  <_  m )
148119, 147sylan2 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  <_  m
)
14977, 97, 118, 148fsumle 12580 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  <_  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) m )
15071recnd 9116 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  m  e.  CC )
151 fsumconst 12575 . . . . . . . . . . . . 13  |-  ( ( ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) )  e.  Fin  /\  m  e.  CC )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) m  =  ( (
# `  ( (
( |_ `  c
)  +  1 ) ... ( |_ `  x ) ) )  x.  m ) )
15277, 150, 151syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) m  =  ( (
# `  ( (
( |_ `  c
)  +  1 ) ... ( |_ `  x ) ) )  x.  m ) )
153149, 152breqtrd 4238 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  <_  ( ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  x.  m ) )
154120nnzd 10376 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( |_ `  c
)  +  1 )  e.  ZZ )
155 uzid 10502 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  c
)  +  1 )  e.  ZZ  ->  (
( |_ `  c
)  +  1 )  e.  ( ZZ>= `  (
( |_ `  c
)  +  1 ) ) )
156154, 155syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( |_ `  c
)  +  1 )  e.  ( ZZ>= `  (
( |_ `  c
)  +  1 ) ) )
157 0re 9093 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
158157a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  0  e.  RR )
15947, 31mpan9 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  n  e.  NN )  ->  [_ n  /  k ]_ A  e.  CC )
160159adantlr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  NN )  ->  [_ n  /  k ]_ A  e.  CC )
161123, 160syldan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  [_ n  /  k ]_ A  e.  CC )
162161abscld 12240 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  ( abs `  [_ n  /  k ]_ A
)  e.  RR )
16371adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  m  e.  RR )
164161absge0d 12248 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  0  <_  ( abs `  [_ n  / 
k ]_ A ) )
165158, 162, 163, 164, 147letrd 9229 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) )  ->  0  <_  m
)
166165ralrimiva 2791 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  A. n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) 0  <_  m )
167 biidd 230 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( |_
`  c )  +  1 )  ->  (
0  <_  m  <->  0  <_  m ) )
168167rspcv 3050 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  c
)  +  1 )  e.  ( ZZ>= `  (
( |_ `  c
)  +  1 ) )  ->  ( A. n  e.  ( ZZ>= `  ( ( |_ `  c )  +  1 ) ) 0  <_  m  ->  0  <_  m
) )
169156, 166, 168sylc 59 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  0  <_  m )
170 reflcl 11207 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
17169, 170syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  x )  e.  RR )
172 ssdomg 7155 . . . . . . . . . . . . . . . 16  |-  ( ( 1 ... ( |_
`  x ) )  e.  Fin  ->  (
( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) 
C_  ( 1 ... ( |_ `  x
) )  ->  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) )  ~<_  ( 1 ... ( |_ `  x ) ) ) )
17364, 93, 172sylc 59 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) )  ~<_  ( 1 ... ( |_ `  x ) ) )
174 hashdomi 11656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( |_ `  c )  +  1 ) ... ( |_
`  x ) )  ~<_  ( 1 ... ( |_ `  x ) )  ->  ( # `  (
( ( |_ `  c )  +  1 ) ... ( |_
`  x ) ) )  <_  ( # `  (
1 ... ( |_ `  x ) ) ) )
175173, 174syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  <_ 
( # `  ( 1 ... ( |_ `  x ) ) ) )
176 flge0nn0 11227 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
177 hashfz1 11632 . . . . . . . . . . . . . . 15  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
17857, 176, 1773syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( # `
 ( 1 ... ( |_ `  x
) ) )  =  ( |_ `  x
) )
179175, 178breqtrd 4238 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  <_ 
( |_ `  x
) )
180 flle 11210 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
18169, 180syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( |_ `  x )  <_  x )
182116, 171, 69, 179, 181letrd 9229 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( # `
 ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  <_  x )
183116, 69, 71, 169, 182lemul1ad 9952 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( # `  ( ( ( |_ `  c
)  +  1 ) ... ( |_ `  x ) ) )  x.  m )  <_ 
( x  x.  m
) )
18498, 117, 100, 153, 183letrd 9229 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  <_  ( x  x.  m ) )
18570, 98, 99, 100, 113, 184le2addd 9646 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  sum_ n  e.  ( ( ( |_
`  c )  +  1 ) ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
) )  <_  (
( x  x.  sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A ) )  +  ( x  x.  m
) ) )
186 ltp1 9850 . . . . . . . . . . 11  |-  ( ( |_ `  c )  e.  RR  ->  ( |_ `  c )  < 
( ( |_ `  c )  +  1 ) )
187 fzdisj 11080 . . . . . . . . . . 11  |-  ( ( |_ `  c )  <  ( ( |_
`  c )  +  1 )  ->  (
( 1 ... ( |_ `  c ) )  i^i  ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
18882, 186, 1873syl 19 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( 1 ... ( |_ `  c ) )  i^i  ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) )  =  (/) )
18996recnd 9116 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
[_ n  /  k ]_ A )  e.  CC )
190188, 92, 64, 189fsumsplit 12535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  sum_ n  e.  ( ( ( |_ `  c )  +  1 ) ... ( |_ `  x
) ) ( abs `  [_ n  /  k ]_ A ) ) )
19137adantrr 699 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  x  e.  CC )
192191, 101, 150adddid 9114 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  x.  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  m
) )  =  ( ( x  x.  sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A ) )  +  ( x  x.  m
) ) )
193185, 190, 1923brtr4d 4244 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  [_ n  /  k ]_ A
)  <_  ( x  x.  ( sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m ) ) )
19463, 68, 73, 76, 193letrd 9229 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  sum_ k  e.  ( 1 ... ( |_
`  x ) ) A )  <_  (
x  x.  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  m
) ) )
195 rpregt0 10627 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
196195ad2antrl 710 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
x  e.  RR  /\  0  <  x ) )
197 ledivmul 9885 . . . . . . . 8  |-  ( ( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  e.  RR  /\  ( sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m )  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  x
)  <_  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  m
)  <->  ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  <_  ( x  x.  ( sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m ) ) ) )
19863, 72, 196, 197syl3anc 1185 . . . . . . 7  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( ( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  x )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m )  <-> 
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  <_  ( x  x.  ( sum_ n  e.  ( 1 ... ( |_
`  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m ) ) ) )
199194, 198mpbird 225 . . . . . 6  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  (
( abs `  sum_ k  e.  ( 1 ... ( |_ `  x ) ) A )  /  x )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  c ) ) ( abs `  [_ n  /  k ]_ A
)  +  m ) )
20061, 199eqbrtrd 4234 . . . . 5  |-  ( ( ( ( ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  /\  ( x  e.  RR+  /\  c  <_  x
) )  ->  ( abs `  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  c
) ) ( abs `  [_ n  /  k ]_ A )  +  m
) )
20111, 40, 45, 53, 200elo1d 12332 . . . 4  |-  ( ( ( ph  /\  (
c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  /\  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m ) )  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_ `  x ) ) A  /  x ) )  e.  O ( 1 ) )
202201ex 425 . . 3  |-  ( (
ph  /\  ( c  e.  ( 1 [,)  +oo )  /\  m  e.  RR ) )  ->  ( A. k  e.  NN  ( c  <_  k  ->  ( abs `  A
)  <_  m )  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) A  /  x ) )  e.  O ( 1 ) ) )
203202rexlimdvva 2839 . 2  |-  ( ph  ->  ( E. c  e.  ( 1 [,)  +oo ) E. m  e.  RR  A. k  e.  NN  (
c  <_  k  ->  ( abs `  A )  <_  m )  -> 
( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) A  /  x ) )  e.  O ( 1 ) ) )
2049, 203mpd 15 1  |-  ( ph  ->  ( x  e.  RR+  |->  ( sum_ k  e.  ( 1 ... ( |_
`  x ) ) A  /  x ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   [_csb 3253    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   class class class wbr 4214    e. cmpt 4268   dom cdm 4880   -->wf 5452   ` cfv 5456  (class class class)co 6083    ~<_ cdom 7109   Fincfn 7111   CCcc 8990   RRcr 8991   0cc0 8992   1c1 8993    + caddc 8995    x. cmul 8997    +oocpnf 9119    < clt 9122    <_ cle 9123    / cdiv 9679   NNcn 10002   NN0cn0 10223   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   [,)cico 10920   ...cfz 11045   |_cfl 11203   #chash 11620   abscabs 12041   O ( 1 )co1 12282   sum_csu 12481
This theorem is referenced by:  selberg2lem  21246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-n0 10224  df-z 10285  df-uz 10491  df-rp 10615  df-ico 10924  df-fz 11046  df-fzo 11138  df-fl 11204  df-seq 11326  df-exp 11385  df-hash 11621  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-clim 12284  df-o1 12286  df-lo1 12287  df-sum 12482
  Copyright terms: Public domain W3C validator