MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1mptrcl Structured version   Unicode version

Theorem o1mptrcl 12416
Description: Reverse closure for an eventually bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
o1mptrcl.3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
Assertion
Ref Expression
o1mptrcl  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Distinct variable groups:    x, A    ph, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem o1mptrcl
StepHypRef Expression
1 o1mptrcl.3 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  O
( 1 ) )
2 o1f 12323 . . . . 5  |-  ( ( x  e.  A  |->  B )  e.  O ( 1 )  ->  (
x  e.  A  |->  B ) : dom  (
x  e.  A  |->  B ) --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC )
4 o1add2.1 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
54ralrimiva 2789 . . . . . 6  |-  ( ph  ->  A. x  e.  A  B  e.  V )
6 dmmptg 5367 . . . . . 6  |-  ( A. x  e.  A  B  e.  V  ->  dom  (
x  e.  A  |->  B )  =  A )
75, 6syl 16 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
87feq2d 5581 . . . 4  |-  ( ph  ->  ( ( x  e.  A  |->  B ) : dom  ( x  e.  A  |->  B ) --> CC  <->  ( x  e.  A  |->  B ) : A --> CC ) )
93, 8mpbid 202 . . 3  |-  ( ph  ->  ( x  e.  A  |->  B ) : A --> CC )
10 eqid 2436 . . . 4  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
1110fmpt 5890 . . 3  |-  ( A. x  e.  A  B  e.  CC  <->  ( x  e.  A  |->  B ) : A --> CC )
129, 11sylibr 204 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  CC )
1312r19.21bi 2804 1  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    e. cmpt 4266   dom cdm 4878   -->wf 5450   CCcc 8988   O ( 1 )co1 12280
This theorem is referenced by:  o1le  12446  fsumo1  12591  o1fsum  12592  o1cxp  20813  mulogsum  21226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-pm 7021  df-o1 12284
  Copyright terms: Public domain W3C validator