Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaabs Structured version   Unicode version

Theorem oaabs 6879
 Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oaabs

Proof of Theorem oaabs
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssexg 4341 . . . . . . . . 9
21ex 424 . . . . . . . 8
3 omelon2 4849 . . . . . . . 8
42, 3syl6com 33 . . . . . . 7
54imp 419 . . . . . 6
65adantll 695 . . . . 5
7 simplr 732 . . . . 5
86, 7jca 519 . . . 4
9 oawordeu 6790 . . . 4
108, 9sylancom 649 . . 3
11 reurex 2914 . . 3
1210, 11syl 16 . 2
13 nnon 4843 . . . . . . 7
1413ad3antrrr 711 . . . . . 6
156adantr 452 . . . . . 6
16 simpr 448 . . . . . 6
17 oaass 6796 . . . . . 6
1814, 15, 16, 17syl3anc 1184 . . . . 5
19 simpll 731 . . . . . . . 8
20 oaabslem 6878 . . . . . . . 8
216, 19, 20syl2anc 643 . . . . . . 7
2221adantr 452 . . . . . 6
2322oveq1d 6088 . . . . 5
2418, 23eqtr3d 2469 . . . 4
25 oveq2 6081 . . . . 5
26 id 20 . . . . 5
2725, 26eqeq12d 2449 . . . 4
2824, 27syl5ibcom 212 . . 3
2928rexlimdva 2822 . 2
3012, 29mpd 15 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  wrex 2698  wreu 2699  cvv 2948   wss 3312  con0 4573  com 4837  (class class class)co 6073   coa 6713 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-oadd 6720
 Copyright terms: Public domain W3C validator