MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaordex Unicode version

Theorem oaordex 6556
Description: Existence theorem for ordering of ordinal sum. Similar to Proposition 4.34(f) of [Mendelson] p. 266 and its converse. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
oaordex  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  E. x  e.  On  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oaordex
StepHypRef Expression
1 onelss 4434 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A 
C_  B ) )
21adantl 452 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  A  C_  B )
)
3 oawordex 6555 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  E. x  e.  On  ( A  +o  x )  =  B ) )
42, 3sylibd 205 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  E. x  e.  On  ( A  +o  x
)  =  B ) )
5 oaord1 6549 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( (/)  e.  x  <->  A  e.  ( A  +o  x ) ) )
6 eleq2 2344 . . . . . . . . . . . . 13  |-  ( ( A  +o  x )  =  B  ->  ( A  e.  ( A  +o  x )  <->  A  e.  B ) )
75, 6sylan9bb 680 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  ( (/)  e.  x  <->  A  e.  B ) )
87biimprcd 216 . . . . . . . . . . 11  |-  ( A  e.  B  ->  (
( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  (/)  e.  x
) )
98exp4c 591 . . . . . . . . . 10  |-  ( A  e.  B  ->  ( A  e.  On  ->  ( x  e.  On  ->  ( ( A  +o  x
)  =  B  ->  (/) 
e.  x ) ) ) )
109com12 27 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A  e.  B  ->  ( x  e.  On  ->  ( ( A  +o  x
)  =  B  ->  (/) 
e.  x ) ) ) )
1110imp4b 573 . . . . . . . 8  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  (/)  e.  x
) )
12 simpr 447 . . . . . . . . 9  |-  ( ( x  e.  On  /\  ( A  +o  x
)  =  B )  ->  ( A  +o  x )  =  B )
1312a1i 10 . . . . . . . 8  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  ( A  +o  x )  =  B ) )
1411, 13jcad 519 . . . . . . 7  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( ( x  e.  On  /\  ( A  +o  x )  =  B )  ->  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
1514exp3a 425 . . . . . 6  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( x  e.  On  ->  ( ( A  +o  x )  =  B  ->  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
1615reximdvai 2653 . . . . 5  |-  ( ( A  e.  On  /\  A  e.  B )  ->  ( E. x  e.  On  ( A  +o  x )  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
1716ex 423 . . . 4  |-  ( A  e.  On  ->  ( A  e.  B  ->  ( E. x  e.  On  ( A  +o  x
)  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
1817adantr 451 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  ( E. x  e.  On  ( A  +o  x )  =  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) ) )
194, 18mpdd 36 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  ->  E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B ) ) )
207biimpd 198 . . . . . . 7  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  ( A  +o  x )  =  B )  ->  ( (/)  e.  x  ->  A  e.  B ) )
2120exp31 587 . . . . . 6  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( A  +o  x
)  =  B  -> 
( (/)  e.  x  ->  A  e.  B )
) ) )
2221com34 77 . . . . 5  |-  ( A  e.  On  ->  (
x  e.  On  ->  (
(/)  e.  x  ->  ( ( A  +o  x
)  =  B  ->  A  e.  B )
) ) )
2322imp4a 572 . . . 4  |-  ( A  e.  On  ->  (
x  e.  On  ->  ( ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) ) )
2423rexlimdv 2666 . . 3  |-  ( A  e.  On  ->  ( E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2524adantr 451 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( E. x  e.  On  ( (/)  e.  x  /\  ( A  +o  x
)  =  B )  ->  A  e.  B
) )
2619, 25impbid 183 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  E. x  e.  On  ( (/) 
e.  x  /\  ( A  +o  x )  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544    C_ wss 3152   (/)c0 3455   Oncon0 4392  (class class class)co 5858    +o coa 6476
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-oadd 6483
  Copyright terms: Public domain W3C validator