MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oarec Structured version   Unicode version

Theorem oarec 6805
Description: Recursive definition of ordinal addition. Exercise 25 of [Enderton] p. 240. (Contributed by NM, 26-Dec-2004.) (Revised by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
oarec  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oarec
Dummy variables  y 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . . 4  |-  ( z  =  (/)  ->  ( A  +o  z )  =  ( A  +o  (/) ) )
2 mpteq1 4289 . . . . . . . 8  |-  ( z  =  (/)  ->  ( x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  (/)  |->  ( A  +o  x ) ) )
3 mpt0 5572 . . . . . . . 8  |-  ( x  e.  (/)  |->  ( A  +o  x ) )  =  (/)
42, 3syl6eq 2484 . . . . . . 7  |-  ( z  =  (/)  ->  ( x  e.  z  |->  ( A  +o  x ) )  =  (/) )
54rneqd 5097 . . . . . 6  |-  ( z  =  (/)  ->  ran  (
x  e.  z  |->  ( A  +o  x ) )  =  ran  (/) )
6 rn0 5127 . . . . . 6  |-  ran  (/)  =  (/)
75, 6syl6eq 2484 . . . . 5  |-  ( z  =  (/)  ->  ran  (
x  e.  z  |->  ( A  +o  x ) )  =  (/) )
87uneq2d 3501 . . . 4  |-  ( z  =  (/)  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  (/) ) )
91, 8eqeq12d 2450 . . 3  |-  ( z  =  (/)  ->  ( ( A  +o  z )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) )  <->  ( A  +o  (/) )  =  ( A  u.  (/) ) ) )
10 oveq2 6089 . . . 4  |-  ( z  =  w  ->  ( A  +o  z )  =  ( A  +o  w
) )
11 mpteq1 4289 . . . . . 6  |-  ( z  =  w  ->  (
x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  w  |->  ( A  +o  x ) ) )
1211rneqd 5097 . . . . 5  |-  ( z  =  w  ->  ran  ( x  e.  z  |->  ( A  +o  x
) )  =  ran  ( x  e.  w  |->  ( A  +o  x
) ) )
1312uneq2d 3501 . . . 4  |-  ( z  =  w  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
1410, 13eqeq12d 2450 . . 3  |-  ( z  =  w  ->  (
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  w )  =  ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) ) ) )
15 oveq2 6089 . . . 4  |-  ( z  =  suc  w  -> 
( A  +o  z
)  =  ( A  +o  suc  w ) )
16 mpteq1 4289 . . . . . 6  |-  ( z  =  suc  w  -> 
( x  e.  z 
|->  ( A  +o  x
) )  =  ( x  e.  suc  w  |->  ( A  +o  x
) ) )
1716rneqd 5097 . . . . 5  |-  ( z  =  suc  w  ->  ran  ( x  e.  z 
|->  ( A  +o  x
) )  =  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )
1817uneq2d 3501 . . . 4  |-  ( z  =  suc  w  -> 
( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) )
1915, 18eqeq12d 2450 . . 3  |-  ( z  =  suc  w  -> 
( ( A  +o  z )  =  ( A  u.  ran  (
x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
20 oveq2 6089 . . . 4  |-  ( z  =  B  ->  ( A  +o  z )  =  ( A  +o  B
) )
21 mpteq1 4289 . . . . . 6  |-  ( z  =  B  ->  (
x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  B  |->  ( A  +o  x ) ) )
2221rneqd 5097 . . . . 5  |-  ( z  =  B  ->  ran  ( x  e.  z  |->  ( A  +o  x
) )  =  ran  ( x  e.  B  |->  ( A  +o  x
) ) )
2322uneq2d 3501 . . . 4  |-  ( z  =  B  ->  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
2420, 23eqeq12d 2450 . . 3  |-  ( z  =  B  ->  (
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) )  <->  ( A  +o  B )  =  ( A  u.  ran  (
x  e.  B  |->  ( A  +o  x ) ) ) ) )
25 oa0 6760 . . . 4  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  A )
26 un0 3652 . . . 4  |-  ( A  u.  (/) )  =  A
2725, 26syl6eqr 2486 . . 3  |-  ( A  e.  On  ->  ( A  +o  (/) )  =  ( A  u.  (/) ) )
28 uneq1 3494 . . . . . 6  |-  ( ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( ( A  +o  w )  u.  {
( A  +o  w
) } )  =  ( ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  u. 
{ ( A  +o  w ) } ) )
29 unass 3504 . . . . . . 7  |-  ( ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  u.  {
( A  +o  w
) } )  =  ( A  u.  ( ran  ( x  e.  w  |->  ( A  +o  x
) )  u.  {
( A  +o  w
) } ) )
30 rexun 3527 . . . . . . . . . . 11  |-  ( E. x  e.  ( w  u.  { w }
) y  =  ( A  +o  x )  <-> 
( E. x  e.  w  y  =  ( A  +o  x )  \/  E. x  e. 
{ w } y  =  ( A  +o  x ) ) )
31 df-suc 4587 . . . . . . . . . . . 12  |-  suc  w  =  ( w  u. 
{ w } )
3231rexeqi 2909 . . . . . . . . . . 11  |-  ( E. x  e.  suc  w
y  =  ( A  +o  x )  <->  E. x  e.  ( w  u.  {
w } ) y  =  ( A  +o  x ) )
33 vex 2959 . . . . . . . . . . . . 13  |-  y  e. 
_V
34 eqid 2436 . . . . . . . . . . . . . 14  |-  ( x  e.  w  |->  ( A  +o  x ) )  =  ( x  e.  w  |->  ( A  +o  x ) )
3534elrnmpt 5117 . . . . . . . . . . . . 13  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  w  y  =  ( A  +o  x ) ) )
3633, 35ax-mp 8 . . . . . . . . . . . 12  |-  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  w  y  =  ( A  +o  x ) )
37 elsn 3829 . . . . . . . . . . . . 13  |-  ( y  e.  { ( A  +o  w ) }  <-> 
y  =  ( A  +o  w ) )
38 vex 2959 . . . . . . . . . . . . . 14  |-  w  e. 
_V
39 oveq2 6089 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( A  +o  x )  =  ( A  +o  w
) )
4039eqeq2d 2447 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
y  =  ( A  +o  x )  <->  y  =  ( A  +o  w
) ) )
4138, 40rexsn 3850 . . . . . . . . . . . . 13  |-  ( E. x  e.  { w } y  =  ( A  +o  x )  <-> 
y  =  ( A  +o  w ) )
4237, 41bitr4i 244 . . . . . . . . . . . 12  |-  ( y  e.  { ( A  +o  w ) }  <->  E. x  e.  { w } y  =  ( A  +o  x ) )
4336, 42orbi12i 508 . . . . . . . . . . 11  |-  ( ( y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) )  \/  y  e. 
{ ( A  +o  w ) } )  <-> 
( E. x  e.  w  y  =  ( A  +o  x )  \/  E. x  e. 
{ w } y  =  ( A  +o  x ) ) )
4430, 32, 433bitr4i 269 . . . . . . . . . 10  |-  ( E. x  e.  suc  w
y  =  ( A  +o  x )  <->  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  \/  y  e.  { ( A  +o  w ) } ) )
45 eqid 2436 . . . . . . . . . . 11  |-  ( x  e.  suc  w  |->  ( A  +o  x ) )  =  ( x  e.  suc  w  |->  ( A  +o  x ) )
46 ovex 6106 . . . . . . . . . . 11  |-  ( A  +o  x )  e. 
_V
4745, 46elrnmpti 5121 . . . . . . . . . 10  |-  ( y  e.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) )  <->  E. x  e.  suc  w y  =  ( A  +o  x ) )
48 elun 3488 . . . . . . . . . 10  |-  ( y  e.  ( ran  (
x  e.  w  |->  ( A  +o  x ) )  u.  { ( A  +o  w ) } )  <->  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  \/  y  e.  { ( A  +o  w ) } ) )
4944, 47, 483bitr4i 269 . . . . . . . . 9  |-  ( y  e.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) )  <->  y  e.  ( ran  ( x  e.  w  |->  ( A  +o  x ) )  u. 
{ ( A  +o  w ) } ) )
5049eqriv 2433 . . . . . . . 8  |-  ran  (
x  e.  suc  w  |->  ( A  +o  x
) )  =  ( ran  ( x  e.  w  |->  ( A  +o  x ) )  u. 
{ ( A  +o  w ) } )
5150uneq2i 3498 . . . . . . 7  |-  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ( ran  ( x  e.  w  |->  ( A  +o  x
) )  u.  {
( A  +o  w
) } ) )
5229, 51eqtr4i 2459 . . . . . 6  |-  ( ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  u.  {
( A  +o  w
) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) )
5328, 52syl6eq 2484 . . . . 5  |-  ( ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( ( A  +o  w )  u.  {
( A  +o  w
) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) )
54 oasuc 6768 . . . . . . 7  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( A  +o  suc  w )  =  suc  ( A  +o  w
) )
55 df-suc 4587 . . . . . . 7  |-  suc  ( A  +o  w )  =  ( ( A  +o  w )  u.  {
( A  +o  w
) } )
5654, 55syl6eq 2484 . . . . . 6  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( A  +o  suc  w )  =  ( ( A  +o  w
)  u.  { ( A  +o  w ) } ) )
5756eqeq1d 2444 . . . . 5  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( ( A  +o  suc  w )  =  ( A  u.  ran  (
x  e.  suc  w  |->  ( A  +o  x
) ) )  <->  ( ( A  +o  w )  u. 
{ ( A  +o  w ) } )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
5853, 57syl5ibr 213 . . . 4  |-  ( ( A  e.  On  /\  w  e.  On )  ->  ( ( A  +o  w )  =  ( A  u.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )  ->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) )
5958expcom 425 . . 3  |-  ( w  e.  On  ->  ( A  e.  On  ->  ( ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  ->  ( A  +o  suc  w )  =  ( A  u.  ran  ( x  e.  suc  w  |->  ( A  +o  x ) ) ) ) ) )
60 vex 2959 . . . . . . . 8  |-  z  e. 
_V
61 oalim 6776 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( z  e.  _V  /\ 
Lim  z ) )  ->  ( A  +o  z )  =  U_ w  e.  z  ( A  +o  w ) )
6260, 61mpanr1 665 . . . . . . 7  |-  ( ( A  e.  On  /\  Lim  z )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
6362ancoms 440 . . . . . 6  |-  ( ( Lim  z  /\  A  e.  On )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
6463adantr 452 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  ( A  +o  z )  = 
U_ w  e.  z  ( A  +o  w
) )
65 iuneq2 4109 . . . . . 6  |-  ( A. w  e.  z  ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  ->  U_ w  e.  z 
( A  +o  w
)  =  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
6665adantl 453 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  U_ w  e.  z  ( A  +o  w )  =  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )
67 iunun 4171 . . . . . . 7  |-  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( U_ w  e.  z  A  u.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x
) ) )
68 0ellim 4643 . . . . . . . . 9  |-  ( Lim  z  ->  (/)  e.  z )
69 ne0i 3634 . . . . . . . . 9  |-  ( (/)  e.  z  ->  z  =/=  (/) )
70 iunconst 4101 . . . . . . . . 9  |-  ( z  =/=  (/)  ->  U_ w  e.  z  A  =  A )
7168, 69, 703syl 19 . . . . . . . 8  |-  ( Lim  z  ->  U_ w  e.  z  A  =  A )
72 limuni 4641 . . . . . . . . . . . 12  |-  ( Lim  z  ->  z  =  U. z )
7372rexeqdv 2911 . . . . . . . . . . 11  |-  ( Lim  z  ->  ( E. x  e.  z  y  =  ( A  +o  x )  <->  E. x  e.  U. z y  =  ( A  +o  x
) ) )
74 df-rex 2711 . . . . . . . . . . . . . 14  |-  ( E. x  e.  w  y  =  ( A  +o  x )  <->  E. x
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
7536, 74bitri 241 . . . . . . . . . . . . 13  |-  ( y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) ) )
7675rexbii 2730 . . . . . . . . . . . 12  |-  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. w  e.  z  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) ) )
77 eluni2 4019 . . . . . . . . . . . . . . . 16  |-  ( x  e.  U. z  <->  E. w  e.  z  x  e.  w )
7877anbi1i 677 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  U. z  /\  y  =  ( A  +o  x ) )  <-> 
( E. w  e.  z  x  e.  w  /\  y  =  ( A  +o  x ) ) )
79 r19.41v 2861 . . . . . . . . . . . . . . 15  |-  ( E. w  e.  z  ( x  e.  w  /\  y  =  ( A  +o  x ) )  <->  ( E. w  e.  z  x  e.  w  /\  y  =  ( A  +o  x ) ) )
8078, 79bitr4i 244 . . . . . . . . . . . . . 14  |-  ( ( x  e.  U. z  /\  y  =  ( A  +o  x ) )  <->  E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8180exbii 1592 . . . . . . . . . . . . 13  |-  ( E. x ( x  e. 
U. z  /\  y  =  ( A  +o  x ) )  <->  E. x E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
82 df-rex 2711 . . . . . . . . . . . . 13  |-  ( E. x  e.  U. z
y  =  ( A  +o  x )  <->  E. x
( x  e.  U. z  /\  y  =  ( A  +o  x ) ) )
83 rexcom4 2975 . . . . . . . . . . . . 13  |-  ( E. w  e.  z  E. x ( x  e.  w  /\  y  =  ( A  +o  x
) )  <->  E. x E. w  e.  z 
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8481, 82, 833bitr4i 269 . . . . . . . . . . . 12  |-  ( E. x  e.  U. z
y  =  ( A  +o  x )  <->  E. w  e.  z  E. x
( x  e.  w  /\  y  =  ( A  +o  x ) ) )
8576, 84bitr4i 244 . . . . . . . . . . 11  |-  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  U. z
y  =  ( A  +o  x ) )
8673, 85syl6rbbr 256 . . . . . . . . . 10  |-  ( Lim  z  ->  ( E. w  e.  z  y  e.  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. x  e.  z  y  =  ( A  +o  x
) ) )
87 eliun 4097 . . . . . . . . . 10  |-  ( y  e.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  E. w  e.  z 
y  e.  ran  (
x  e.  w  |->  ( A  +o  x ) ) )
88 eqid 2436 . . . . . . . . . . 11  |-  ( x  e.  z  |->  ( A  +o  x ) )  =  ( x  e.  z  |->  ( A  +o  x ) )
8988, 46elrnmpti 5121 . . . . . . . . . 10  |-  ( y  e.  ran  ( x  e.  z  |->  ( A  +o  x ) )  <->  E. x  e.  z 
y  =  ( A  +o  x ) )
9086, 87, 893bitr4g 280 . . . . . . . . 9  |-  ( Lim  z  ->  ( y  e.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  <->  y  e.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9190eqrdv 2434 . . . . . . . 8  |-  ( Lim  z  ->  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) )  =  ran  ( x  e.  z  |->  ( A  +o  x ) ) )
9271, 91uneq12d 3502 . . . . . . 7  |-  ( Lim  z  ->  ( U_ w  e.  z  A  u.  U_ w  e.  z  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9367, 92syl5eq 2480 . . . . . 6  |-  ( Lim  z  ->  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) ) )
9493ad2antrr 707 . . . . 5  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  U_ w  e.  z  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) )  =  ( A  u.  ran  ( x  e.  z 
|->  ( A  +o  x
) ) ) )
9564, 66, 943eqtrd 2472 . . . 4  |-  ( ( ( Lim  z  /\  A  e.  On )  /\  A. w  e.  z  ( A  +o  w
)  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x ) ) ) )  ->  ( A  +o  z )  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x
) ) ) )
9695exp31 588 . . 3  |-  ( Lim  z  ->  ( A  e.  On  ->  ( A. w  e.  z  ( A  +o  w )  =  ( A  u.  ran  ( x  e.  w  |->  ( A  +o  x
) ) )  -> 
( A  +o  z
)  =  ( A  u.  ran  ( x  e.  z  |->  ( A  +o  x ) ) ) ) ) )
979, 14, 19, 24, 27, 59, 96tfinds3 4844 . 2  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( A  +o  B )  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x
) ) ) ) )
9897impcom 420 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  ran  ( x  e.  B  |->  ( A  +o  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    u. cun 3318   (/)c0 3628   {csn 3814   U.cuni 4015   U_ciun 4093    e. cmpt 4266   Oncon0 4581   Lim wlim 4582   suc csuc 4583   ran crn 4879  (class class class)co 6081    +o coa 6721
This theorem is referenced by:  oacomf1o  6808  onacda  8077
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-oadd 6728
  Copyright terms: Public domain W3C validator