MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordeu Unicode version

Theorem oawordeu 6553
Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of [TakeutiZaring] p. 59. (Contributed by NM, 11-Dec-2004.)
Assertion
Ref Expression
oawordeu  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  E! x  e.  On  ( A  +o  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem oawordeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sseq1 3199 . . . 4  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  C_  B  <->  if ( A  e.  On ,  A ,  (/) )  C_  B ) )
2 oveq1 5865 . . . . . 6  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( A  +o  x )  =  ( if ( A  e.  On ,  A ,  (/) )  +o  x
) )
32eqeq1d 2291 . . . . 5  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  (
( A  +o  x
)  =  B  <->  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) )
43reubidv 2724 . . . 4  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  ( E! x  e.  On  ( A  +o  x
)  =  B  <->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) )
51, 4imbi12d 311 . . 3  |-  ( A  =  if ( A  e.  On ,  A ,  (/) )  ->  (
( A  C_  B  ->  E! x  e.  On  ( A  +o  x
)  =  B )  <-> 
( if ( A  e.  On ,  A ,  (/) )  C_  B  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B ) ) )
6 sseq2 3200 . . . 4  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  ( if ( A  e.  On ,  A ,  (/) )  C_  B 
<->  if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) ) ) )
7 eqeq2 2292 . . . . 5  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  (
( if ( A  e.  On ,  A ,  (/) )  +o  x
)  =  B  <->  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) )
87reubidv 2724 . . . 4  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  ( E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B  <->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) )
96, 8imbi12d 311 . . 3  |-  ( B  =  if ( B  e.  On ,  B ,  (/) )  ->  (
( if ( A  e.  On ,  A ,  (/) )  C_  B  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  B )  <->  ( if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) )  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) ) ) )
10 0elon 4445 . . . . 5  |-  (/)  e.  On
1110elimel 3617 . . . 4  |-  if ( A  e.  On ,  A ,  (/) )  e.  On
1210elimel 3617 . . . 4  |-  if ( B  e.  On ,  B ,  (/) )  e.  On
13 eqid 2283 . . . 4  |-  { y  e.  On  |  if ( B  e.  On ,  B ,  (/) )  C_  ( if ( A  e.  On ,  A ,  (/) )  +o  y ) }  =  { y  e.  On  |  if ( B  e.  On ,  B ,  (/) )  C_  ( if ( A  e.  On ,  A ,  (/) )  +o  y ) }
1411, 12, 13oawordeulem 6552 . . 3  |-  ( if ( A  e.  On ,  A ,  (/) )  C_  if ( B  e.  On ,  B ,  (/) )  ->  E! x  e.  On  ( if ( A  e.  On ,  A ,  (/) )  +o  x )  =  if ( B  e.  On ,  B ,  (/) ) )
155, 9, 14dedth2h 3607 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  ->  E! x  e.  On  ( A  +o  x
)  =  B ) )
1615imp 418 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  A  C_  B
)  ->  E! x  e.  On  ( A  +o  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   E!wreu 2545   {crab 2547    C_ wss 3152   (/)c0 3455   ifcif 3565   Oncon0 4392  (class class class)co 5858    +o coa 6476
This theorem is referenced by:  oawordex  6555  oaf1o  6561  oaabs  6642  oaabs2  6643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-oadd 6483
  Copyright terms: Public domain W3C validator