MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ocvin Unicode version

Theorem ocvin 16574
Description: An orthocomplement has trivial intersection with the original subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
ocv2ss.o  |-  ._|_  =  ( ocv `  W )
ocvin.l  |-  L  =  ( LSubSp `  W )
ocvin.z  |-  .0.  =  ( 0g `  W )
Assertion
Ref Expression
ocvin  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  =  {  .0.  } )

Proof of Theorem ocvin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . . . . . 9  |-  ( Base `  W )  =  (
Base `  W )
2 eqid 2283 . . . . . . . . 9  |-  ( .i
`  W )  =  ( .i `  W
)
3 eqid 2283 . . . . . . . . 9  |-  (Scalar `  W )  =  (Scalar `  W )
4 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
5 ocv2ss.o . . . . . . . . 9  |-  ._|_  =  ( ocv `  W )
61, 2, 3, 4, 5ocvi 16569 . . . . . . . 8  |-  ( ( x  e.  (  ._|_  `  S )  /\  x  e.  S )  ->  (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
76ancoms 439 . . . . . . 7  |-  ( ( x  e.  S  /\  x  e.  (  ._|_  `  S ) )  -> 
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
) )
87adantl 452 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  (
x ( .i `  W ) x )  =  ( 0g `  (Scalar `  W ) ) )
9 simpll 730 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  W  e.  PreHil )
10 ocvin.l . . . . . . . . 9  |-  L  =  ( LSubSp `  W )
111, 10lssel 15695 . . . . . . . 8  |-  ( ( S  e.  L  /\  x  e.  S )  ->  x  e.  ( Base `  W ) )
1211ad2ant2lr 728 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  x  e.  ( Base `  W
) )
13 ocvin.z . . . . . . . 8  |-  .0.  =  ( 0g `  W )
143, 2, 1, 4, 13ipeq0 16542 . . . . . . 7  |-  ( ( W  e.  PreHil  /\  x  e.  ( Base `  W
) )  ->  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  <->  x  =  .0.  ) )
159, 12, 14syl2anc 642 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  (
( x ( .i
`  W ) x )  =  ( 0g
`  (Scalar `  W )
)  <->  x  =  .0.  ) )
168, 15mpbid 201 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  S  e.  L )  /\  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )  ->  x  =  .0.  )
1716ex 423 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (
( x  e.  S  /\  x  e.  (  ._|_  `  S ) )  ->  x  =  .0.  ) )
18 elin 3358 . . . 4  |-  ( x  e.  ( S  i^i  (  ._|_  `  S )
)  <->  ( x  e.  S  /\  x  e.  (  ._|_  `  S ) ) )
19 elsn 3655 . . . 4  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
2017, 18, 193imtr4g 261 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (
x  e.  ( S  i^i  (  ._|_  `  S
) )  ->  x  e.  {  .0.  } ) )
2120ssrdv 3185 . 2  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  C_  {  .0.  } )
22 phllmod 16534 . . . 4  |-  ( W  e.  PreHil  ->  W  e.  LMod )
2322adantr 451 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  W  e.  LMod )
241, 10lssss 15694 . . . . 5  |-  ( S  e.  L  ->  S  C_  ( Base `  W
) )
251, 5, 10ocvlss 16572 . . . . 5  |-  ( ( W  e.  PreHil  /\  S  C_  ( Base `  W
) )  ->  (  ._|_  `  S )  e.  L )
2624, 25sylan2 460 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  (  ._|_  `  S )  e.  L )
2710lssincl 15722 . . . . 5  |-  ( ( W  e.  LMod  /\  S  e.  L  /\  (  ._|_  `  S )  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
2822, 27syl3an1 1215 . . . 4  |-  ( ( W  e.  PreHil  /\  S  e.  L  /\  (  ._|_  `  S )  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
2926, 28mpd3an3 1278 . . 3  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  e.  L
)
3013, 10lss0ss 15706 . . 3  |-  ( ( W  e.  LMod  /\  ( S  i^i  (  ._|_  `  S
) )  e.  L
)  ->  {  .0.  } 
C_  ( S  i^i  (  ._|_  `  S )
) )
3123, 29, 30syl2anc 642 . 2  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  {  .0.  } 
C_  ( S  i^i  (  ._|_  `  S )
) )
3221, 31eqssd 3196 1  |-  ( ( W  e.  PreHil  /\  S  e.  L )  ->  ( S  i^i  (  ._|_  `  S
) )  =  {  .0.  } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   {csn 3640   ` cfv 5255  (class class class)co 5858   Basecbs 13148  Scalarcsca 13211   .icip 13213   0gc0g 13400   LModclmod 15627   LSubSpclss 15689   PreHilcphl 16528   ocvcocv 16560
This theorem is referenced by:  ocv1  16579  pjdm2  16611  pjff  16612  pjf2  16614  pjfo  16615  obselocv  16628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-ghm 14681  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lmhm 15779  df-lvec 15856  df-sra 15925  df-rgmod 15926  df-phl 16530  df-ocv 16563
  Copyright terms: Public domain W3C validator