MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd Unicode version

Theorem odadd 15142
Description: The order of a product is the product of the orders, if the factors have coprime order. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1  |-  O  =  ( od `  G
)
odadd1.2  |-  X  =  ( Base `  G
)
odadd1.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
odadd  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  ( A  .+  B ) )  =  ( ( O `  A )  x.  ( O `  B ) ) )

Proof of Theorem odadd
StepHypRef Expression
1 simpl1 958 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  G  e.  Abel )
2 ablgrp 15094 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 15 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  G  e.  Grp )
4 simpl2 959 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  A  e.  X
)
5 simpl3 960 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  B  e.  X
)
6 odadd1.2 . . . . 5  |-  X  =  ( Base `  G
)
7 odadd1.3 . . . . 5  |-  .+  =  ( +g  `  G )
86, 7grpcl 14495 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
93, 4, 5, 8syl3anc 1182 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( A  .+  B )  e.  X
)
10 odadd1.1 . . . 4  |-  O  =  ( od `  G
)
116, 10odcl 14851 . . 3  |-  ( ( A  .+  B )  e.  X  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
129, 11syl 15 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  ( A  .+  B ) )  e.  NN0 )
136, 10odcl 14851 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
144, 13syl 15 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  A )  e.  NN0 )
156, 10odcl 14851 . . . 4  |-  ( B  e.  X  ->  ( O `  B )  e.  NN0 )
165, 15syl 15 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  B )  e.  NN0 )
1714, 16nn0mulcld 10023 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  NN0 )
18 simpr 447 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  =  1 )
1918oveq2d 5874 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  ( A  .+  B ) )  x.  1 ) )
2012nn0cnd 10020 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  ( A  .+  B ) )  e.  CC )
2120mulid1d 8852 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  1 )  =  ( O `  ( A 
.+  B ) ) )
2219, 21eqtrd 2315 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( O `  ( A 
.+  B ) ) )
2310, 6, 7odadd1 15140 . . . 4  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  A )  x.  ( O `  B )
) )
2423adantr 451 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
2522, 24eqbrtrrd 4045 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  ( A  .+  B ) )  ||  ( ( O `  A )  x.  ( O `  B ) ) )
2610, 6, 7odadd2 15141 . . . 4  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  x.  ( O `
 B ) ) 
||  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) ) )
2726adantr 451 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  ||  (
( O `  ( A  .+  B ) )  x.  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 ) ) )
2818oveq1d 5873 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 )  =  ( 1 ^ 2 ) )
29 sq1 11198 . . . . . 6  |-  ( 1 ^ 2 )  =  1
3028, 29syl6eq 2331 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) ) ^
2 )  =  1 )
3130oveq2d 5874 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  ( ( O `  ( A  .+  B ) )  x.  1 ) )
3231, 21eqtrd 2315 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( ( O `
 A )  gcd  ( O `  B
) ) ^ 2 ) )  =  ( O `  ( A 
.+  B ) ) )
3327, 32breqtrd 4047 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  ||  ( O `  ( A  .+  B ) ) )
34 dvdseq 12576 . 2  |-  ( ( ( ( O `  ( A  .+  B ) )  e.  NN0  /\  ( ( O `  A )  x.  ( O `  B )
)  e.  NN0 )  /\  ( ( O `  ( A  .+  B ) )  ||  ( ( O `  A )  x.  ( O `  B ) )  /\  ( ( O `  A )  x.  ( O `  B )
)  ||  ( O `  ( A  .+  B
) ) ) )  ->  ( O `  ( A  .+  B ) )  =  ( ( O `  A )  x.  ( O `  B ) ) )
3512, 17, 25, 33, 34syl22anc 1183 1  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  1 )  ->  ( O `  ( A  .+  B ) )  =  ( ( O `  A )  x.  ( O `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   1c1 8738    x. cmul 8742   2c2 9795   NN0cn0 9965   ^cexp 11104    || cdivides 12531    gcd cgcd 12685   Basecbs 13148   +g cplusg 13208   Grpcgrp 14362   odcod 14840   Abelcabel 15090
This theorem is referenced by:  gexexlem  15144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-od 14844  df-cmn 15091  df-abl 15092
  Copyright terms: Public domain W3C validator