MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Unicode version

Theorem odadd1 15464
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1  |-  O  =  ( od `  G
)
odadd1.2  |-  X  =  ( Base `  G
)
odadd1.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
odadd1  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  A )  x.  ( O `  B )
) )

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 15418 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
2 odadd1.2 . . . . . . . . . 10  |-  X  =  ( Base `  G
)
3 odadd1.3 . . . . . . . . . 10  |-  .+  =  ( +g  `  G )
42, 3grpcl 14819 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B
)  e.  X )
51, 4syl3an1 1218 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( A  .+  B )  e.  X )
6 odadd1.1 . . . . . . . . 9  |-  O  =  ( od `  G
)
72, 6odcl 15175 . . . . . . . 8  |-  ( ( A  .+  B )  e.  X  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
85, 7syl 16 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e. 
NN0 )
98nn0zd 10374 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
102, 6odcl 15175 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
11103ad2ant2 980 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  NN0 )
1211nn0zd 10374 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  A )  e.  ZZ )
132, 6odcl 15175 . . . . . . . . . 10  |-  ( B  e.  X  ->  ( O `  B )  e.  NN0 )
14133ad2ant3 981 . . . . . . . . 9  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  NN0 )
1514nn0zd 10374 . . . . . . . 8  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  ( O `  B )  e.  ZZ )
1612, 15gcdcld 13019 . . . . . . 7  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  gcd  ( O `  B ) )  e. 
NN0 )
1716nn0zd 10374 . . . . . 6  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  A
)  gcd  ( O `  B ) )  e.  ZZ )
189, 17zmulcld 10382 . . . . 5  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  e.  ZZ )
1918adantr 453 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
20 dvds0 12866 . . . 4  |-  ( ( ( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  e.  ZZ  ->  ( ( O `  ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  0
)
2119, 20syl 16 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  0
)
22 gcdeq0 13022 . . . . . 6  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( O `  B )  e.  ZZ )  -> 
( ( ( O `
 A )  gcd  ( O `  B
) )  =  0  <-> 
( ( O `  A )  =  0  /\  ( O `  B )  =  0 ) ) )
2312, 15, 22syl2anc 644 . . . . 5  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( O `  A )  gcd  ( O `  B )
)  =  0  <->  (
( O `  A
)  =  0  /\  ( O `  B
)  =  0 ) ) )
2423biimpa 472 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  =  0  /\  ( O `
 B )  =  0 ) )
25 oveq12 6091 . . . . 5  |-  ( ( ( O `  A
)  =  0  /\  ( O `  B
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  ( 0  x.  0 ) )
26 0cn 9085 . . . . . 6  |-  0  e.  CC
2726mul01i 9257 . . . . 5  |-  ( 0  x.  0 )  =  0
2825, 27syl6eq 2485 . . . 4  |-  ( ( ( O `  A
)  =  0  /\  ( O `  B
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  0 )
2924, 28syl 16 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  0 )
3021, 29breqtrrd 4239 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
31 simpl1 961 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Abel )
3212adantr 453 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  ZZ )
3315adantr 453 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  ZZ )
34 gcddvds 13016 . . . . . . . . . . 11  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( O `  B )  e.  ZZ )  -> 
( ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )  /\  ( ( O `  A )  gcd  ( O `  B )
)  ||  ( O `  B ) ) )
3532, 33, 34syl2anc 644 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  /\  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
) )
3635simpld 447 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  A )
)
3717adantr 453 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  ZZ )
38 dvdsmultr1 12885 . . . . . . . . . 10  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( O `  A )  e.  ZZ  /\  ( O `  B )  e.  ZZ )  ->  (
( ( O `  A )  gcd  ( O `  B )
)  ||  ( O `  A )  ->  (
( O `  A
)  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
) ) )
3937, 32, 33, 38syl3anc 1185 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) ) )
4036, 39mpd 15 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
41 simpr 449 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  =/=  0
)
4232, 33zmulcld 10382 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  ZZ )
43 dvdsval2 12856 . . . . . . . . 9  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( ( O `  A )  x.  ( O `  B )
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
)  <->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ ) )
4437, 41, 42, 43syl3anc 1185 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( ( O `  A )  x.  ( O `  B )
)  <->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ ) )
4540, 44mpbid 203 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
46 simpl2 962 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  A  e.  X
)
47 simpl3 963 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  B  e.  X
)
48 eqid 2437 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
492, 48, 3mulgdi 15450 . . . . . . 7  |-  ( ( G  e.  Abel  /\  (
( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ  /\  A  e.  X  /\  B  e.  X ) )  -> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) ( A  .+  B ) )  =  ( ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) A ) 
.+  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) B ) ) )
5031, 45, 46, 47, 49syl13anc 1187 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) ( A 
.+  B ) )  =  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) ) )
5135simprd 451 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  ||  ( O `  B )
)
52 dvdsval2 12856 . . . . . . . . . . . . 13  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  B
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
5337, 41, 33, 52syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  B )  <-> 
( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
5451, 53mpbid 203 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
55 dvdsmul1 12872 . . . . . . . . . . 11  |-  ( ( ( O `  A
)  e.  ZZ  /\  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( O `  A
)  ||  ( ( O `  A )  x.  ( ( O `  B )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) ) )
5632, 54, 55syl2anc 644 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( O `  A
)  x.  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
5732zcnd 10377 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  e.  CC )
5833zcnd 10377 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  e.  CC )
5937zcnd 10377 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  gcd  ( O `  B
) )  e.  CC )
6057, 58, 59, 41divassd 9826 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  A
)  x.  ( ( O `  B )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
6156, 60breqtrrd 4239 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  A )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
6231, 1syl 16 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  G  e.  Grp )
63 eqid 2437 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
642, 6, 48, 63oddvds 15186 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  A )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
6562, 46, 45, 64syl3anc 1185 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) A )  =  ( 0g `  G
) ) )
6661, 65mpbid 203 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) A )  =  ( 0g `  G ) )
67 dvdsval2 12856 . . . . . . . . . . . . 13  |-  ( ( ( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0  /\  ( O `  A
)  e.  ZZ )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
6837, 41, 32, 67syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  gcd  ( O `  B ) )  ||  ( O `  A )  <-> 
( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ ) )
6936, 68mpbid 203 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  / 
( ( O `  A )  gcd  ( O `  B )
) )  e.  ZZ )
70 dvdsmul1 12872 . . . . . . . . . . 11  |-  ( ( ( O `  B
)  e.  ZZ  /\  ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( O `  B
)  ||  ( ( O `  B )  x.  ( ( O `  A )  /  (
( O `  A
)  gcd  ( O `  B ) ) ) ) )
7133, 69, 70syl2anc 644 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7257, 58mulcomd 9110 . . . . . . . . . . . 12  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  =  ( ( O `  B
)  x.  ( O `
 A ) ) )
7372oveq1d 6097 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( ( O `  B )  x.  ( O `  A )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
7458, 57, 59, 41divassd 9826 . . . . . . . . . . 11  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  B )  x.  ( O `  A ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7573, 74eqtrd 2469 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  B
)  x.  ( ( O `  A )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) ) )
7671, 75breqtrrd 4239 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  B )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) )
772, 6, 48, 63oddvds 15186 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  B  e.  X  /\  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  B )  ||  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
7862, 47, 45, 77syl3anc 1185 . . . . . . . . 9  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 B )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) B )  =  ( 0g `  G
) ) )
7976, 78mpbid 203 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) B )  =  ( 0g `  G ) )
8066, 79oveq12d 6100 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) )  =  ( ( 0g `  G
)  .+  ( 0g `  G ) ) )
812, 63grpidcl 14834 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
8262, 81syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( 0g `  G )  e.  X
)
832, 3, 63grplid 14836 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  X )  -> 
( ( 0g `  G )  .+  ( 0g `  G ) )  =  ( 0g `  G ) )
8462, 82, 83syl2anc 644 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
8580, 84eqtrd 2469 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) A )  .+  ( ( ( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) B ) )  =  ( 0g `  G ) )
8650, 85eqtrd 2469 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) (.g `  G ) ( A 
.+  B ) )  =  ( 0g `  G ) )
875adantr 453 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( A  .+  B )  e.  X
)
882, 6, 48, 63oddvds 15186 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( A  .+  B )  e.  X  /\  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  e.  ZZ )  -> 
( ( O `  ( A  .+  B ) )  ||  ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  <->  ( (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) ) (.g `  G ) ( A  .+  B ) )  =  ( 0g
`  G ) ) )
8962, 87, 45, 88syl3anc 1185 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  ||  ( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) (.g `  G
) ( A  .+  B ) )  =  ( 0g `  G
) ) )
9086, 89mpbird 225 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  ||  ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
919adantr 453 . . . . 5  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( O `  ( A  .+  B ) )  e.  ZZ )
92 dvdsmulcr 12880 . . . . 5  |-  ( ( ( O `  ( A  .+  B ) )  e.  ZZ  /\  (
( ( O `  A )  x.  ( O `  B )
)  /  ( ( O `  A )  gcd  ( O `  B ) ) )  e.  ZZ  /\  (
( ( O `  A )  gcd  ( O `  B )
)  e.  ZZ  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 ) )  ->  ( (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( O `  ( A  .+  B ) ) 
||  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) ) )
9391, 45, 37, 41, 92syl112anc 1189 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( O `  ( A 
.+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) )  x.  (
( O `  A
)  gcd  ( O `  B ) ) )  <-> 
( O `  ( A  .+  B ) ) 
||  ( ( ( O `  A )  x.  ( O `  B ) )  / 
( ( O `  A )  gcd  ( O `  B )
) ) ) )
9490, 93mpbird 225 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( ( ( O `
 A )  x.  ( O `  B
) )  /  (
( O `  A
)  gcd  ( O `  B ) ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) ) )
9542zcnd 10377 . . . 4  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 A )  x.  ( O `  B
) )  e.  CC )
9695, 59, 41divcan1d 9792 . . 3  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( ( ( O `  A
)  x.  ( O `
 B ) )  /  ( ( O `
 A )  gcd  ( O `  B
) ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  =  ( ( O `  A
)  x.  ( O `
 B ) ) )
9794, 96breqtrd 4237 . 2  |-  ( ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  /\  ( ( O `  A )  gcd  ( O `  B )
)  =/=  0 )  ->  ( ( O `
 ( A  .+  B ) )  x.  ( ( O `  A )  gcd  ( O `  B )
) )  ||  (
( O `  A
)  x.  ( O `
 B ) ) )
9830, 97pm2.61dane 2683 1  |-  ( ( G  e.  Abel  /\  A  e.  X  /\  B  e.  X )  ->  (
( O `  ( A  .+  B ) )  x.  ( ( O `
 A )  gcd  ( O `  B
) ) )  ||  ( ( O `  A )  x.  ( O `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   class class class wbr 4213   ` cfv 5455  (class class class)co 6082   0cc0 8991    x. cmul 8996    / cdiv 9678   NN0cn0 10222   ZZcz 10283    || cdivides 12853    gcd cgcd 13007   Basecbs 13470   +g cplusg 13530   0gc0g 13724   Grpcgrp 14686  .gcmg 14690   odcod 15164   Abelcabel 15414
This theorem is referenced by:  odadd  15466  torsubg  15470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-sup 7447  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-n0 10223  df-z 10284  df-uz 10490  df-rp 10614  df-fz 11045  df-fzo 11137  df-fl 11203  df-mod 11252  df-seq 11325  df-exp 11384  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-dvds 12854  df-gcd 13008  df-0g 13728  df-mnd 14691  df-grp 14813  df-minusg 14814  df-sbg 14815  df-mulg 14816  df-od 15168  df-cmn 15415  df-abl 15416
  Copyright terms: Public domain W3C validator