MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Structured version   Unicode version

Theorem odcau 15243
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 
P contains an element of order  P. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x  |-  X  =  ( Base `  G
)
odcau.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
odcau  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Distinct variable groups:    g, G    P, g    g, X
Allowed substitution hint:    O( g)

Proof of Theorem odcau
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3  |-  X  =  ( Base `  G
)
2 simpl1 961 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  G  e.  Grp )
3 simpl2 962 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  X  e.  Fin )
4 simpl3 963 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  Prime )
5 1nn0 10242 . . . 4  |-  1  e.  NN0
65a1i 11 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  1  e.  NN0 )
7 prmnn 13087 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
84, 7syl 16 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  NN )
98nncnd 10021 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  CC )
109exp1d 11523 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  =  P )
11 simpr 449 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  ||  ( # `  X
) )
1210, 11eqbrtrd 4235 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  ||  ( # `  X ) )
131, 2, 3, 4, 6, 12sylow1 15242 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. s  e.  (SubGrp `  G )
( # `  s )  =  ( P ^
1 ) )
1410eqeq2d 2449 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  (
( # `  s )  =  ( P ^
1 )  <->  ( # `  s
)  =  P ) )
1514adantr 453 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  <->  ( # `  s
)  =  P ) )
16 fvex 5745 . . . . . . . . . . . 12  |-  ( 0g
`  G )  e. 
_V
17 hashsng 11652 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  _V  ->  ( # `
 { ( 0g
`  G ) } )  =  1 )
1816, 17ax-mp 5 . . . . . . . . . . 11  |-  ( # `  { ( 0g `  G ) } )  =  1
19 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  =  P )
204adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  Prime )
21 prmuz2 13102 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2220, 21syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  ( ZZ>= `  2 )
)
2319, 22eqeltrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  e.  ( ZZ>= ` 
2 ) )
24 eluz2b2 10553 . . . . . . . . . . . . 13  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  <->  ( ( # `  s
)  e.  NN  /\  1  <  ( # `  s
) ) )
2524simprbi 452 . . . . . . . . . . . 12  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  ->  1  <  ( # `  s ) )
2623, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  1  <  (
# `  s )
)
2718, 26syl5eqbr 4248 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  {
( 0g `  G
) } )  < 
( # `  s ) )
28 snfi 7190 . . . . . . . . . . 11  |-  { ( 0g `  G ) }  e.  Fin
293adantr 453 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  X  e.  Fin )
301subgss 14950 . . . . . . . . . . . . 13  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  X )
3130ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  C_  X )
32 ssfi 7332 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  s  C_  X )  -> 
s  e.  Fin )
3329, 31, 32syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  e.  Fin )
34 hashsdom 11660 . . . . . . . . . . 11  |-  ( ( { ( 0g `  G ) }  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  { ( 0g `  G ) } )  <  ( # `  s
)  <->  { ( 0g `  G ) }  ~<  s ) )
3528, 33, 34sylancr 646 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( ( # `
 { ( 0g
`  G ) } )  <  ( # `  s )  <->  { ( 0g `  G ) } 
~<  s ) )
3627, 35mpbid 203 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  { ( 0g `  G ) } 
~<  s )
37 sdomdif 7258 . . . . . . . . 9  |-  ( { ( 0g `  G
) }  ~<  s  ->  ( s  \  {
( 0g `  G
) } )  =/=  (/) )
3836, 37syl 16 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( s  \  { ( 0g `  G ) } )  =/=  (/) )
39 n0 3639 . . . . . . . 8  |-  ( ( s  \  { ( 0g `  G ) } )  =/=  (/)  <->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
4038, 39sylib 190 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
41 eldifsn 3929 . . . . . . . . 9  |-  ( g  e.  ( s  \  { ( 0g `  G ) } )  <-> 
( g  e.  s  /\  g  =/=  ( 0g `  G ) ) )
4231adantrr 699 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  C_  X
)
43 simprrl 742 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  s )
4442, 43sseldd 3351 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  X
)
45 simprrr 743 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  =/=  ( 0g `  G ) )
46 simprll 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  (SubGrp `  G ) )
4733adantrr 699 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  Fin )
48 odcau.o . . . . . . . . . . . . . . . . . . 19  |-  O  =  ( od `  G
)
4948odsubdvds 15210 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  (SubGrp `  G )  /\  s  e.  Fin  /\  g  e.  s )  ->  ( O `  g )  ||  ( # `  s
) )
5046, 47, 43, 49syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  ( # `
 s ) )
51 simprlr 741 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( # `  s
)  =  P )
5250, 51breqtrd 4239 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  P
)
534adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  P  e.  Prime )
542adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  G  e.  Grp )
553adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  X  e.  Fin )
561, 48odcl2 15206 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  g  e.  X )  ->  ( O `  g )  e.  NN )
5754, 55, 44, 56syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  e.  NN )
58 dvdsprime 13097 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( O `  g )  e.  NN )  ->  (
( O `  g
)  ||  P  <->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
5953, 57, 58syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  ||  P 
<->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
6052, 59mpbid 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  P  \/  ( O `
 g )  =  1 ) )
6160ord 368 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  ( O `
 g )  =  1 ) )
62 eqid 2438 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
6348, 62, 1odeq1 15201 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( O `  g )  =  1  <-> 
g  =  ( 0g
`  G ) ) )
6454, 44, 63syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  1  <->  g  =  ( 0g `  G ) ) )
6561, 64sylibd 207 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  g  =  ( 0g `  G
) ) )
6665necon1ad 2673 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  =/=  ( 0g `  G
)  ->  ( O `  g )  =  P ) )
6745, 66mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  =  P )
6844, 67jca 520 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  e.  X  /\  ( O `
 g )  =  P ) )
6968expr 600 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( (
g  e.  s  /\  g  =/=  ( 0g `  G ) )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7041, 69syl5bi 210 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( g  e.  ( s  \  {
( 0g `  G
) } )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7170eximdv 1633 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( E. g  g  e.  (
s  \  { ( 0g `  G ) } )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7240, 71mpd 15 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
73 df-rex 2713 . . . . . 6  |-  ( E. g  e.  X  ( O `  g )  =  P  <->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
7472, 73sylibr 205 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g  e.  X  ( O `  g )  =  P )
7574expr 600 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  P  ->  E. g  e.  X  ( O `  g )  =  P ) )
7615, 75sylbid 208 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7776rexlimdva 2832 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( E. s  e.  (SubGrp `  G ) ( # `  s )  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7813, 77mpd 15 1  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   _Vcvv 2958    \ cdif 3319    C_ wss 3322   (/)c0 3630   {csn 3816   class class class wbr 4215   ` cfv 5457  (class class class)co 6084    ~< csdm 7111   Fincfn 7112   1c1 8996    < clt 9125   NNcn 10005   2c2 10054   NN0cn0 10226   ZZ>=cuz 10493   ^cexp 11387   #chash 11623    || cdivides 12857   Primecprime 13084   Basecbs 13474   0gc0g 13728   Grpcgrp 14690  SubGrpcsubg 14943   odcod 15168
This theorem is referenced by:  pgpfi  15244  ablfacrplem  15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-disj 4186  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732  df-er 6908  df-ec 6910  df-qs 6914  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-acn 7834  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-dvds 12858  df-gcd 13012  df-prm 13085  df-pc 13216  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-0g 13732  df-mnd 14695  df-submnd 14744  df-grp 14817  df-minusg 14818  df-sbg 14819  df-mulg 14820  df-subg 14946  df-eqg 14948  df-ga 15072  df-od 15172
  Copyright terms: Public domain W3C validator