MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odcau Unicode version

Theorem odcau 14915
Description: Cauchy's theorem for the order of an element in a group. A finite group whose order divides a prime 
P contains an element of order  P. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
odcau.x  |-  X  =  ( Base `  G
)
odcau.o  |-  O  =  ( od `  G
)
Assertion
Ref Expression
odcau  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Distinct variable groups:    g, G    P, g    g, X
Allowed substitution hint:    O( g)

Proof of Theorem odcau
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 odcau.x . . 3  |-  X  =  ( Base `  G
)
2 simpl1 958 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  G  e.  Grp )
3 simpl2 959 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  X  e.  Fin )
4 simpl3 960 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  Prime )
5 1nn0 9981 . . . 4  |-  1  e.  NN0
65a1i 10 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  1  e.  NN0 )
7 prmnn 12761 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
84, 7syl 15 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  NN )
98nncnd 9762 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  e.  CC )
109exp1d 11240 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  =  P )
11 simpr 447 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  P  ||  ( # `  X
) )
1210, 11eqbrtrd 4043 . . 3  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( P ^ 1 )  ||  ( # `  X ) )
131, 2, 3, 4, 6, 12sylow1 14914 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. s  e.  (SubGrp `  G )
( # `  s )  =  ( P ^
1 ) )
1410eqeq2d 2294 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  (
( # `  s )  =  ( P ^
1 )  <->  ( # `  s
)  =  P ) )
1514adantr 451 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  <->  ( # `  s
)  =  P ) )
16 fvex 5539 . . . . . . . . . . . 12  |-  ( 0g
`  G )  e. 
_V
17 hashsng 11356 . . . . . . . . . . . 12  |-  ( ( 0g `  G )  e.  _V  ->  ( # `
 { ( 0g
`  G ) } )  =  1 )
1816, 17ax-mp 8 . . . . . . . . . . 11  |-  ( # `  { ( 0g `  G ) } )  =  1
19 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  =  P )
204adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  Prime )
21 prmuz2 12776 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2220, 21syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  P  e.  ( ZZ>= `  2 )
)
2319, 22eqeltrd 2357 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  s
)  e.  ( ZZ>= ` 
2 ) )
24 eluz2b2 10290 . . . . . . . . . . . . 13  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  <->  ( ( # `  s
)  e.  NN  /\  1  <  ( # `  s
) ) )
2524simprbi 450 . . . . . . . . . . . 12  |-  ( (
# `  s )  e.  ( ZZ>= `  2 )  ->  1  <  ( # `  s ) )
2623, 25syl 15 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  1  <  (
# `  s )
)
2718, 26syl5eqbr 4056 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( # `  {
( 0g `  G
) } )  < 
( # `  s ) )
28 snfi 6941 . . . . . . . . . . 11  |-  { ( 0g `  G ) }  e.  Fin
293adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  X  e.  Fin )
301subgss 14622 . . . . . . . . . . . . 13  |-  ( s  e.  (SubGrp `  G
)  ->  s  C_  X )
3130ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  C_  X )
32 ssfi 7083 . . . . . . . . . . . 12  |-  ( ( X  e.  Fin  /\  s  C_  X )  -> 
s  e.  Fin )
3329, 31, 32syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  s  e.  Fin )
34 hashsdom 11363 . . . . . . . . . . 11  |-  ( ( { ( 0g `  G ) }  e.  Fin  /\  s  e.  Fin )  ->  ( ( # `  { ( 0g `  G ) } )  <  ( # `  s
)  <->  { ( 0g `  G ) }  ~<  s ) )
3528, 33, 34sylancr 644 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( ( # `
 { ( 0g
`  G ) } )  <  ( # `  s )  <->  { ( 0g `  G ) } 
~<  s ) )
3627, 35mpbid 201 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  { ( 0g `  G ) } 
~<  s )
37 sdomdif 7009 . . . . . . . . 9  |-  ( { ( 0g `  G
) }  ~<  s  ->  ( s  \  {
( 0g `  G
) } )  =/=  (/) )
3836, 37syl 15 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( s  \  { ( 0g `  G ) } )  =/=  (/) )
39 n0 3464 . . . . . . . 8  |-  ( ( s  \  { ( 0g `  G ) } )  =/=  (/)  <->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
4038, 39sylib 188 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g 
g  e.  ( s 
\  { ( 0g
`  G ) } ) )
41 eldifsn 3749 . . . . . . . . 9  |-  ( g  e.  ( s  \  { ( 0g `  G ) } )  <-> 
( g  e.  s  /\  g  =/=  ( 0g `  G ) ) )
4231adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  C_  X
)
43 simprrl 740 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  s )
4442, 43sseldd 3181 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  e.  X
)
45 simprrr 741 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  g  =/=  ( 0g `  G ) )
46 simprll 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  (SubGrp `  G ) )
4733adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  s  e.  Fin )
48 odcau.o . . . . . . . . . . . . . . . . . . 19  |-  O  =  ( od `  G
)
4948odsubdvds 14882 . . . . . . . . . . . . . . . . . 18  |-  ( ( s  e.  (SubGrp `  G )  /\  s  e.  Fin  /\  g  e.  s )  ->  ( O `  g )  ||  ( # `  s
) )
5046, 47, 43, 49syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  ( # `
 s ) )
51 simprlr 739 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( # `  s
)  =  P )
5250, 51breqtrd 4047 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  ||  P
)
534adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  P  e.  Prime )
542adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  G  e.  Grp )
553adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  X  e.  Fin )
561, 48odcl2 14878 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  X  e.  Fin  /\  g  e.  X )  ->  ( O `  g )  e.  NN )
5754, 55, 44, 56syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  e.  NN )
58 dvdsprime 12771 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  ( O `  g )  e.  NN )  ->  (
( O `  g
)  ||  P  <->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
5953, 57, 58syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  ||  P 
<->  ( ( O `  g )  =  P  \/  ( O `  g )  =  1 ) ) )
6052, 59mpbid 201 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  P  \/  ( O `
 g )  =  1 ) )
6160ord 366 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  ( O `
 g )  =  1 ) )
62 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  =  ( 0g `  G
)
6348, 62, 1odeq1 14873 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  g  e.  X )  ->  ( ( O `  g )  =  1  <-> 
g  =  ( 0g
`  G ) ) )
6454, 44, 63syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( ( O `
 g )  =  1  <->  g  =  ( 0g `  G ) ) )
6561, 64sylibd 205 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( -.  ( O `  g )  =  P  ->  g  =  ( 0g `  G
) ) )
6665necon1ad 2513 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  =/=  ( 0g `  G
)  ->  ( O `  g )  =  P ) )
6745, 66mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( O `  g )  =  P )
6844, 67jca 518 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( ( s  e.  (SubGrp `  G
)  /\  ( # `  s
)  =  P )  /\  ( g  e.  s  /\  g  =/=  ( 0g `  G
) ) ) )  ->  ( g  e.  X  /\  ( O `
 g )  =  P ) )
6968expr 598 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( (
g  e.  s  /\  g  =/=  ( 0g `  G ) )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7041, 69syl5bi 208 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( g  e.  ( s  \  {
( 0g `  G
) } )  -> 
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7170eximdv 1608 . . . . . . 7  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  ( E. g  g  e.  (
s  \  { ( 0g `  G ) } )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) ) )
7240, 71mpd 14 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
73 df-rex 2549 . . . . . 6  |-  ( E. g  e.  X  ( O `  g )  =  P  <->  E. g
( g  e.  X  /\  ( O `  g
)  =  P ) )
7472, 73sylibr 203 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  ( s  e.  (SubGrp `  G )  /\  ( # `  s
)  =  P ) )  ->  E. g  e.  X  ( O `  g )  =  P )
7574expr 598 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  P  ->  E. g  e.  X  ( O `  g )  =  P ) )
7615, 75sylbid 206 . . 3  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `
 X ) )  /\  s  e.  (SubGrp `  G ) )  -> 
( ( # `  s
)  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7776rexlimdva 2667 . 2  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  ( E. s  e.  (SubGrp `  G ) ( # `  s )  =  ( P ^ 1 )  ->  E. g  e.  X  ( O `  g )  =  P ) )
7813, 77mpd 14 1  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  P  e.  Prime )  /\  P  ||  ( # `  X
) )  ->  E. g  e.  X  ( O `  g )  =  P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    ~< csdm 6862   Fincfn 6863   1c1 8738    < clt 8867   NNcn 9746   2c2 9795   NN0cn0 9965   ZZ>=cuz 10230   ^cexp 11104   #chash 11337    || cdivides 12531   Primecprime 12758   Basecbs 13148   0gc0g 13400   Grpcgrp 14362  SubGrpcsubg 14615   odcod 14840
This theorem is referenced by:  pgpfi  14916  ablfacrplem  15300
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-eqg 14620  df-ga 14744  df-od 14844
  Copyright terms: Public domain W3C validator