Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddcomabszz Structured version   Unicode version

Theorem oddcomabszz 26961
Description: An odd function which takes nonnegative values on nonnegative arguments commutes with  abs. (Contributed by Stefan O'Rear, 26-Sep-2014.)
Hypotheses
Ref Expression
oddcomabszz.1  |-  ( (
ph  /\  x  e.  ZZ )  ->  A  e.  RR )
oddcomabszz.2  |-  ( (
ph  /\  x  e.  ZZ  /\  0  <_  x
)  ->  0  <_  A )
oddcomabszz.3  |-  ( (
ph  /\  y  e.  ZZ )  ->  C  = 
-u B )
oddcomabszz.4  |-  ( x  =  y  ->  A  =  B )
oddcomabszz.5  |-  ( x  =  -u y  ->  A  =  C )
oddcomabszz.6  |-  ( x  =  D  ->  A  =  E )
oddcomabszz.7  |-  ( x  =  ( abs `  D
)  ->  A  =  F )
Assertion
Ref Expression
oddcomabszz  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  E )  =  F )
Distinct variable groups:    x, B    x, C    x, D, y   
x, E    x, F    y, A    ph, x, y
Allowed substitution hints:    A( x)    B( y)    C( y)    E( y)    F( y)

Proof of Theorem oddcomabszz
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eleq1 2495 . . . . . 6  |-  ( a  =  D  ->  (
a  e.  ZZ  <->  D  e.  ZZ ) )
21anbi2d 685 . . . . 5  |-  ( a  =  D  ->  (
( ph  /\  a  e.  ZZ )  <->  ( ph  /\  D  e.  ZZ ) ) )
3 csbeq1 3246 . . . . . . 7  |-  ( a  =  D  ->  [_ a  /  x ]_ A  = 
[_ D  /  x ]_ A )
43fveq2d 5724 . . . . . 6  |-  ( a  =  D  ->  ( abs `  [_ a  /  x ]_ A )  =  ( abs `  [_ D  /  x ]_ A ) )
5 fveq2 5720 . . . . . . 7  |-  ( a  =  D  ->  ( abs `  a )  =  ( abs `  D
) )
65csbeq1d 3249 . . . . . 6  |-  ( a  =  D  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ ( abs `  D )  /  x ]_ A
)
74, 6eqeq12d 2449 . . . . 5  |-  ( a  =  D  ->  (
( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A  <->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A ) )
82, 7imbi12d 312 . . . 4  |-  ( a  =  D  ->  (
( ( ph  /\  a  e.  ZZ )  ->  ( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A )  <->  ( ( ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A ) ) )
9 nfv 1629 . . . . . . . . . 10  |-  F/ x
( ph  /\  a  e.  ZZ )
10 nfcsb1v 3275 . . . . . . . . . . 11  |-  F/_ x [_ a  /  x ]_ A
1110nfel1 2581 . . . . . . . . . 10  |-  F/ x [_ a  /  x ]_ A  e.  RR
129, 11nfim 1832 . . . . . . . . 9  |-  F/ x
( ( ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR )
13 eleq1 2495 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  e.  ZZ  <->  a  e.  ZZ ) )
1413anbi2d 685 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
15 csbeq1a 3251 . . . . . . . . . . 11  |-  ( x  =  a  ->  A  =  [_ a  /  x ]_ A )
1615eleq1d 2501 . . . . . . . . . 10  |-  ( x  =  a  ->  ( A  e.  RR  <->  [_ a  /  x ]_ A  e.  RR ) )
1714, 16imbi12d 312 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ )  ->  A  e.  RR )  <-> 
( ( ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR ) ) )
18 oddcomabszz.1 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ZZ )  ->  A  e.  RR )
1912, 17, 18chvar 1968 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ )  ->  [_ a  /  x ]_ A  e.  RR )
2019adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  [_ a  /  x ]_ A  e.  RR )
21 nfv 1629 . . . . . . . . . 10  |-  F/ x
( ph  /\  a  e.  ZZ  /\  0  <_ 
a )
22 nfcv 2571 . . . . . . . . . . 11  |-  F/_ x
0
23 nfcv 2571 . . . . . . . . . . 11  |-  F/_ x  <_
2422, 23, 10nfbr 4248 . . . . . . . . . 10  |-  F/ x
0  <_  [_ a  /  x ]_ A
2521, 24nfim 1832 . . . . . . . . 9  |-  F/ x
( ( ph  /\  a  e.  ZZ  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A )
26 breq2 4208 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0  <_  x  <->  0  <_  a ) )
2713, 263anbi23d 1257 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( ph  /\  x  e.  ZZ  /\  0  <_  x )  <->  ( ph  /\  a  e.  ZZ  /\  0  <_  a ) ) )
2815breq2d 4216 . . . . . . . . . 10  |-  ( x  =  a  ->  (
0  <_  A  <->  0  <_  [_ a  /  x ]_ A ) )
2927, 28imbi12d 312 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  ZZ  /\  0  <_  x )  ->  0  <_  A )  <->  ( ( ph  /\  a  e.  ZZ  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A ) ) )
30 oddcomabszz.2 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ZZ  /\  0  <_  x
)  ->  0  <_  A )
3125, 29, 30chvar 1968 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ  /\  0  <_  a
)  ->  0  <_  [_ a  /  x ]_ A )
32313expa 1153 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  0  <_  [_ a  /  x ]_ A )
3320, 32absidd 12215 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ a  /  x ]_ A )
34 zre 10276 . . . . . . . . 9  |-  ( a  e.  ZZ  ->  a  e.  RR )
3534ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  a  e.  RR )
36 absid 12091 . . . . . . . 8  |-  ( ( a  e.  RR  /\  0  <_  a )  -> 
( abs `  a
)  =  a )
3735, 36sylancom 649 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  a )  =  a )
3837csbeq1d 3249 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ a  /  x ]_ A
)
3933, 38eqtr4d 2470 . . . . 5  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  0  <_  a )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ ( abs `  a
)  /  x ]_ A )
40 nfv 1629 . . . . . . . 8  |-  F/ y ( ( ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  =  -u [_ a  /  x ]_ A )
41 eleq1 2495 . . . . . . . . . 10  |-  ( y  =  a  ->  (
y  e.  ZZ  <->  a  e.  ZZ ) )
4241anbi2d 685 . . . . . . . . 9  |-  ( y  =  a  ->  (
( ph  /\  y  e.  ZZ )  <->  ( ph  /\  a  e.  ZZ ) ) )
43 negex 9294 . . . . . . . . . . . 12  |-  -u y  e.  _V
44 nfcv 2571 . . . . . . . . . . . 12  |-  F/_ x C
45 oddcomabszz.5 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  A  =  C )
4643, 44, 45csbief 3284 . . . . . . . . . . 11  |-  [_ -u y  /  x ]_ A  =  C
47 negeq 9288 . . . . . . . . . . . 12  |-  ( y  =  a  ->  -u y  =  -u a )
4847csbeq1d 3249 . . . . . . . . . . 11  |-  ( y  =  a  ->  [_ -u y  /  x ]_ A  = 
[_ -u a  /  x ]_ A )
4946, 48syl5eqr 2481 . . . . . . . . . 10  |-  ( y  =  a  ->  C  =  [_ -u a  /  x ]_ A )
50 vex 2951 . . . . . . . . . . . . 13  |-  y  e. 
_V
51 nfcv 2571 . . . . . . . . . . . . 13  |-  F/_ x B
52 oddcomabszz.4 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  A  =  B )
5350, 51, 52csbief 3284 . . . . . . . . . . . 12  |-  [_ y  /  x ]_ A  =  B
54 csbeq1 3246 . . . . . . . . . . . 12  |-  ( y  =  a  ->  [_ y  /  x ]_ A  = 
[_ a  /  x ]_ A )
5553, 54syl5eqr 2481 . . . . . . . . . . 11  |-  ( y  =  a  ->  B  =  [_ a  /  x ]_ A )
5655negeqd 9290 . . . . . . . . . 10  |-  ( y  =  a  ->  -u B  =  -u [_ a  /  x ]_ A )
5749, 56eqeq12d 2449 . . . . . . . . 9  |-  ( y  =  a  ->  ( C  =  -u B  <->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A ) )
5842, 57imbi12d 312 . . . . . . . 8  |-  ( y  =  a  ->  (
( ( ph  /\  y  e.  ZZ )  ->  C  =  -u B
)  <->  ( ( ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  =  -u [_ a  /  x ]_ A ) ) )
59 oddcomabszz.3 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ZZ )  ->  C  = 
-u B )
6040, 58, 59chvar 1968 . . . . . . 7  |-  ( (
ph  /\  a  e.  ZZ )  ->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A )
6160adantr 452 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ -u a  /  x ]_ A  = 
-u [_ a  /  x ]_ A )
6234ad2antlr 708 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  a  e.  RR )
63 absnid 12093 . . . . . . . 8  |-  ( ( a  e.  RR  /\  a  <_  0 )  -> 
( abs `  a
)  =  -u a
)
6462, 63sylancom 649 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  a )  = 
-u a )
6564csbeq1d 3249 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ ( abs `  a )  /  x ]_ A  =  [_ -u a  /  x ]_ A )
6619adantr 452 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ a  /  x ]_ A  e.  RR )
67 znegcl 10303 . . . . . . . . . . 11  |-  ( a  e.  ZZ  ->  -u a  e.  ZZ )
68 nfv 1629 . . . . . . . . . . . . . 14  |-  F/ x
( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )
69 nfcsb1v 3275 . . . . . . . . . . . . . . 15  |-  F/_ x [_ -u a  /  x ]_ A
7022, 23, 69nfbr 4248 . . . . . . . . . . . . . 14  |-  F/ x
0  <_  [_ -u a  /  x ]_ A
7168, 70nfim 1832 . . . . . . . . . . . . 13  |-  F/ x
( ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  -> 
0  <_  [_ -u a  /  x ]_ A )
72 negex 9294 . . . . . . . . . . . . 13  |-  -u a  e.  _V
73 eleq1 2495 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
x  e.  ZZ  <->  -u a  e.  ZZ ) )
74 breq2 4208 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  (
0  <_  x  <->  0  <_  -u a ) )
7573, 743anbi23d 1257 . . . . . . . . . . . . . 14  |-  ( x  =  -u a  ->  (
( ph  /\  x  e.  ZZ  /\  0  <_  x )  <->  ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a ) ) )
76 csbeq1a 3251 . . . . . . . . . . . . . . 15  |-  ( x  =  -u a  ->  A  =  [_ -u a  /  x ]_ A )
7776breq2d 4216 . . . . . . . . . . . . . 14  |-  ( x  =  -u a  ->  (
0  <_  A  <->  0  <_  [_ -u a  /  x ]_ A ) )
7875, 77imbi12d 312 . . . . . . . . . . . . 13  |-  ( x  =  -u a  ->  (
( ( ph  /\  x  e.  ZZ  /\  0  <_  x )  ->  0  <_  A )  <->  ( ( ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  ->  0  <_  [_ -u a  /  x ]_ A ) ) )
7971, 72, 78, 30vtoclf 2997 . . . . . . . . . . . 12  |-  ( (
ph  /\  -u a  e.  ZZ  /\  0  <_  -u a )  ->  0  <_  [_ -u a  /  x ]_ A )
80793expia 1155 . . . . . . . . . . 11  |-  ( (
ph  /\  -u a  e.  ZZ )  ->  (
0  <_  -u a  -> 
0  <_  [_ -u a  /  x ]_ A ) )
8167, 80sylan2 461 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  -u a  ->  0  <_  [_ -u a  /  x ]_ A ) )
8260breq2d 4216 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  [_ -u a  /  x ]_ A  <->  0  <_  -u [_ a  /  x ]_ A ) )
8381, 82sylibd 206 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  -u a  ->  0  <_ 
-u [_ a  /  x ]_ A ) )
8434adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ZZ )  ->  a  e.  RR )
8584le0neg1d 9588 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  <_  0  <->  0  <_  -u a ) )
8619le0neg1d 9588 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( [_ a  /  x ]_ A  <_  0  <->  0  <_  -u [_ a  /  x ]_ A ) )
8783, 85, 863imtr4d 260 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( a  <_  0  ->  [_ a  /  x ]_ A  <_ 
0 ) )
8887imp 419 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  [_ a  /  x ]_ A  <_ 
0 )
8966, 88absnidd 12206 . . . . . 6  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  [_ a  /  x ]_ A )  = 
-u [_ a  /  x ]_ A )
9061, 65, 893eqtr4rd 2478 . . . . 5  |-  ( ( ( ph  /\  a  e.  ZZ )  /\  a  <_  0 )  ->  ( abs `  [_ a  /  x ]_ A )  = 
[_ ( abs `  a
)  /  x ]_ A )
91 0re 9081 . . . . . . 7  |-  0  e.  RR
92 letric 9164 . . . . . . 7  |-  ( ( 0  e.  RR  /\  a  e.  RR )  ->  ( 0  <_  a  \/  a  <_  0 ) )
9391, 34, 92sylancr 645 . . . . . 6  |-  ( a  e.  ZZ  ->  (
0  <_  a  \/  a  <_  0 ) )
9493adantl 453 . . . . 5  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( 0  <_  a  \/  a  <_  0 ) )
9539, 90, 94mpjaodan 762 . . . 4  |-  ( (
ph  /\  a  e.  ZZ )  ->  ( abs `  [_ a  /  x ]_ A )  =  [_ ( abs `  a )  /  x ]_ A
)
968, 95vtoclg 3003 . . 3  |-  ( D  e.  ZZ  ->  (
( ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  = 
[_ ( abs `  D
)  /  x ]_ A ) )
9796anabsi7 793 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  [_ ( abs `  D )  /  x ]_ A
)
98 nfcvd 2572 . . . . 5  |-  ( D  e.  ZZ  ->  F/_ x E )
99 oddcomabszz.6 . . . . 5  |-  ( x  =  D  ->  A  =  E )
10098, 99csbiegf 3283 . . . 4  |-  ( D  e.  ZZ  ->  [_ D  /  x ]_ A  =  E )
101100fveq2d 5724 . . 3  |-  ( D  e.  ZZ  ->  ( abs `  [_ D  /  x ]_ A )  =  ( abs `  E
) )
102101adantl 453 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  [_ D  /  x ]_ A )  =  ( abs `  E ) )
103 fvex 5734 . . . 4  |-  ( abs `  D )  e.  _V
104 nfcv 2571 . . . 4  |-  F/_ x F
105 oddcomabszz.7 . . . 4  |-  ( x  =  ( abs `  D
)  ->  A  =  F )
106103, 104, 105csbief 3284 . . 3  |-  [_ ( abs `  D )  /  x ]_ A  =  F
107106a1i 11 . 2  |-  ( (
ph  /\  D  e.  ZZ )  ->  [_ ( abs `  D )  /  x ]_ A  =  F )
10897, 102, 1073eqtr3d 2475 1  |-  ( (
ph  /\  D  e.  ZZ )  ->  ( abs `  E )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   [_csb 3243   class class class wbr 4204   ` cfv 5446   RRcr 8979   0cc0 8980    <_ cle 9111   -ucneg 9282   ZZcz 10272   abscabs 12029
This theorem is referenced by:  rmyabs  26977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-n0 10212  df-z 10273  df-uz 10479  df-rp 10603  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031
  Copyright terms: Public domain W3C validator