MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddm1even Unicode version

Theorem oddm1even 12829
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )

Proof of Theorem oddm1even
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  ZZ )
21zcnd 10301 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  CC )
3 ax-1cn 8974 . . . . . 6  |-  1  e.  CC
43a1i 11 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  1  e.  CC )
5 2cn 9995 . . . . . . 7  |-  2  e.  CC
65a1i 11 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  2  e.  CC )
7 simpr 448 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
87zcnd 10301 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  CC )
96, 8mulcld 9034 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
102, 4, 9subadd2d 9355 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
11 eqcom 2382 . . . . 5  |-  ( ( N  -  1 )  =  ( 2  x.  n )  <->  ( 2  x.  n )  =  ( N  -  1 ) )
126, 8mulcomd 9035 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  =  ( n  x.  2 ) )
1312eqeq1d 2388 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  ( N  -  1 )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1411, 13syl5bb 249 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1510, 14bitr3d 247 . . 3  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1615rexbidva 2659 . 2  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
17 odd2np1 12828 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
18 2z 10237 . . 3  |-  2  e.  ZZ
19 peano2zm 10245 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
20 divides 12774 . . 3  |-  ( ( 2  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( 2  ||  ( N  -  1
)  <->  E. n  e.  ZZ  ( n  x.  2
)  =  ( N  -  1 ) ) )
2118, 19, 20sylancr 645 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
2216, 17, 213bitr4d 277 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643   class class class wbr 4146  (class class class)co 6013   CCcc 8914   1c1 8917    + caddc 8919    x. cmul 8921    - cmin 9216   2c2 9974   ZZcz 10207    || cdivides 12772
This theorem is referenced by:  oddp1even  12830  bitscmp  12870
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-n0 10147  df-z 10208  df-dvds 12773
  Copyright terms: Public domain W3C validator