MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddm1even Unicode version

Theorem oddm1even 12604
Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )

Proof of Theorem oddm1even
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  ZZ )
21zcnd 10134 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  N  e.  CC )
3 ax-1cn 8811 . . . . . 6  |-  1  e.  CC
43a1i 10 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  1  e.  CC )
5 2cn 9832 . . . . . . 7  |-  2  e.  CC
65a1i 10 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  2  e.  CC )
7 simpr 447 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  ZZ )
87zcnd 10134 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  n  e.  CC )
96, 8mulcld 8871 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  CC )
102, 4, 9subadd2d 9192 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
11 eqcom 2298 . . . . 5  |-  ( ( N  -  1 )  =  ( 2  x.  n )  <->  ( 2  x.  n )  =  ( N  -  1 ) )
126, 8mulcomd 8872 . . . . . 6  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  =  ( n  x.  2 ) )
1312eqeq1d 2304 . . . . 5  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  ( N  -  1 )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1411, 13syl5bb 248 . . . 4  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1510, 14bitr3d 246 . . 3  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( ( 2  x.  n )  +  1 )  =  N  <-> 
( n  x.  2 )  =  ( N  -  1 ) ) )
1615rexbidva 2573 . 2  |-  ( N  e.  ZZ  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
17 odd2np1 12603 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
18 2z 10070 . . 3  |-  2  e.  ZZ
19 peano2zm 10078 . . 3  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
20 divides 12549 . . 3  |-  ( ( 2  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  ->  ( 2  ||  ( N  -  1
)  <->  E. n  e.  ZZ  ( n  x.  2
)  =  ( N  -  1 ) ) )
2118, 19, 20sylancr 644 . 2  |-  ( N  e.  ZZ  ->  (
2  ||  ( N  -  1 )  <->  E. n  e.  ZZ  ( n  x.  2 )  =  ( N  -  1 ) ) )
2216, 17, 213bitr4d 276 1  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  2  ||  ( N  -  1
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039  (class class class)co 5874   CCcc 8751   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   2c2 9811   ZZcz 10040    || cdivides 12547
This theorem is referenced by:  oddp1even  12605  bitscmp  12645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-dvds 12548
  Copyright terms: Public domain W3C validator