MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvds Unicode version

Theorem oddvds 14862
Description: The only multiples of  A that are equal to the identity are the multiples of the order of  A. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
oddvds  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  ->  ( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) )

Proof of Theorem oddvds
StepHypRef Expression
1 simpr 447 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  NN )
2 simpl3 960 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  N  e.  ZZ )
3 dvdsval3 12535 . . . 4  |-  ( ( ( O `  A
)  e.  NN  /\  N  e.  ZZ )  ->  ( ( O `  A )  ||  N  <->  ( N  mod  ( O `
 A ) )  =  0 ) )
41, 2, 3syl2anc 642 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 A )  ||  N 
<->  ( N  mod  ( O `  A )
)  =  0 ) )
5 simpl2 959 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  A  e.  X
)
6 odcl.1 . . . . . . 7  |-  X  =  ( Base `  G
)
7 odid.4 . . . . . . 7  |-  .0.  =  ( 0g `  G )
8 odid.3 . . . . . . 7  |-  .x.  =  (.g
`  G )
96, 7, 8mulg0 14572 . . . . . 6  |-  ( A  e.  X  ->  (
0  .x.  A )  =  .0.  )
105, 9syl 15 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( 0  .x. 
A )  =  .0.  )
11 oveq1 5865 . . . . . 6  |-  ( ( N  mod  ( O `
 A ) )  =  0  ->  (
( N  mod  ( O `  A )
)  .x.  A )  =  ( 0  .x. 
A ) )
1211eqeq1d 2291 . . . . 5  |-  ( ( N  mod  ( O `
 A ) )  =  0  ->  (
( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  <->  ( 0 
.x.  A )  =  .0.  ) )
1310, 12syl5ibrcom 213 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  =  0  ->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  ) )
142zred 10117 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  N  e.  RR )
151nnrpd 10389 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  RR+ )
16 modlt 10981 . . . . . . . 8  |-  ( ( N  e.  RR  /\  ( O `  A )  e.  RR+ )  ->  ( N  mod  ( O `  A ) )  < 
( O `  A
) )
1714, 15, 16syl2anc 642 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  mod  ( O `  A ) )  <  ( O `
 A ) )
182, 1zmodcld 10990 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  mod  ( O `  A ) )  e.  NN0 )
1918nn0red 10019 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( N  mod  ( O `  A ) )  e.  RR )
201nnred 9761 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( O `  A )  e.  RR )
2119, 20ltnled 8966 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  < 
( O `  A
)  <->  -.  ( O `  A )  <_  ( N  mod  ( O `  A ) ) ) )
2217, 21mpbid 201 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  -.  ( O `  A )  <_  ( N  mod  ( O `  A ) ) )
23 odcl.2 . . . . . . . . . . . 12  |-  O  =  ( od `  G
)
246, 23, 8, 7odlem2 14854 . . . . . . . . . . 11  |-  ( ( A  e.  X  /\  ( N  mod  ( O `
 A ) )  e.  NN  /\  (
( N  mod  ( O `  A )
)  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... ( N  mod  ( O `  A ) ) ) )
25 elfzle2 10800 . . . . . . . . . . 11  |-  ( ( O `  A )  e.  ( 1 ... ( N  mod  ( O `  A )
) )  ->  ( O `  A )  <_  ( N  mod  ( O `  A )
) )
2624, 25syl 15 . . . . . . . . . 10  |-  ( ( A  e.  X  /\  ( N  mod  ( O `
 A ) )  e.  NN  /\  (
( N  mod  ( O `  A )
)  .x.  A )  =  .0.  )  ->  ( O `  A )  <_  ( N  mod  ( O `  A )
) )
27263com23 1157 . . . . . . . . 9  |-  ( ( A  e.  X  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  /\  ( N  mod  ( O `  A ) )  e.  NN )  ->  ( O `  A )  <_  ( N  mod  ( O `  A )
) )
28273expia 1153 . . . . . . . 8  |-  ( ( A  e.  X  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  )  -> 
( ( N  mod  ( O `  A ) )  e.  NN  ->  ( O `  A )  <_  ( N  mod  ( O `  A ) ) ) )
2928con3d 125 . . . . . . 7  |-  ( ( A  e.  X  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  )  -> 
( -.  ( O `
 A )  <_ 
( N  mod  ( O `  A )
)  ->  -.  ( N  mod  ( O `  A ) )  e.  NN ) )
3029impancom 427 . . . . . 6  |-  ( ( A  e.  X  /\  -.  ( O `  A
)  <_  ( N  mod  ( O `  A
) ) )  -> 
( ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0. 
->  -.  ( N  mod  ( O `  A ) )  e.  NN ) )
315, 22, 30syl2anc 642 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( N  mod  ( O `
 A ) ) 
.x.  A )  =  .0.  ->  -.  ( N  mod  ( O `  A ) )  e.  NN ) )
32 elnn0 9967 . . . . . . 7  |-  ( ( N  mod  ( O `
 A ) )  e.  NN0  <->  ( ( N  mod  ( O `  A ) )  e.  NN  \/  ( N  mod  ( O `  A ) )  =  0 ) )
3318, 32sylib 188 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  e.  NN  \/  ( N  mod  ( O `  A ) )  =  0 ) )
3433ord 366 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( -.  ( N  mod  ( O `  A ) )  e.  NN  ->  ( N  mod  ( O `  A
) )  =  0 ) )
3531, 34syld 40 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( N  mod  ( O `
 A ) ) 
.x.  A )  =  .0.  ->  ( N  mod  ( O `  A
) )  =  0 ) )
3613, 35impbid 183 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  =  0  <->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  .0.  ) )
376, 23, 8, 7odmod 14861 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )
3837eqeq1d 2291 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( ( N  mod  ( O `
 A ) ) 
.x.  A )  =  .0.  <->  ( N  .x.  A )  =  .0.  ) )
394, 36, 383bitrd 270 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 A )  ||  N 
<->  ( N  .x.  A
)  =  .0.  )
)
40 simpr 447 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( O `  A )  =  0 )
4140breq1d 4033 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( ( O `
 A )  ||  N 
<->  0  ||  N ) )
42 simpl3 960 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  N  e.  ZZ )
43 0dvds 12549 . . . 4  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
4442, 43syl 15 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( 0  ||  N 
<->  N  =  0 ) )
45 simpl2 959 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  A  e.  X
)
4645, 9syl 15 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( 0  .x. 
A )  =  .0.  )
47 oveq1 5865 . . . . . 6  |-  ( N  =  0  ->  ( N  .x.  A )  =  ( 0  .x.  A
) )
4847eqeq1d 2291 . . . . 5  |-  ( N  =  0  ->  (
( N  .x.  A
)  =  .0.  <->  ( 0 
.x.  A )  =  .0.  ) )
4946, 48syl5ibrcom 213 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( N  =  0  ->  ( N  .x.  A )  =  .0.  ) )
506, 23, 8, 7odnncl 14860 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( N  =/=  0  /\  ( N  .x.  A
)  =  .0.  )
)  ->  ( O `  A )  e.  NN )
5150nnne0d 9790 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( N  =/=  0  /\  ( N  .x.  A
)  =  .0.  )
)  ->  ( O `  A )  =/=  0
)
5251expr 598 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  ( ( N  .x.  A )  =  .0.  ->  ( O `  A )  =/=  0
) )
5352impancom 427 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( N  .x.  A
)  =  .0.  )  ->  ( N  =/=  0  ->  ( O `  A
)  =/=  0 ) )
5453necon4d 2509 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( N  .x.  A
)  =  .0.  )  ->  ( ( O `  A )  =  0  ->  N  =  0 ) )
5554impancom 427 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( ( N 
.x.  A )  =  .0.  ->  N  = 
0 ) )
5649, 55impbid 183 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( N  =  0  <->  ( N  .x.  A )  =  .0.  ) )
5741, 44, 563bitrd 270 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  ( O `  A
)  =  0 )  ->  ( ( O `
 A )  ||  N 
<->  ( N  .x.  A
)  =  .0.  )
)
586, 23odcl 14851 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
59583ad2ant2 977 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  ->  ( O `  A
)  e.  NN0 )
60 elnn0 9967 . . 3  |-  ( ( O `  A )  e.  NN0  <->  ( ( O `
 A )  e.  NN  \/  ( O `
 A )  =  0 ) )
6159, 60sylib 188 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  ->  ( ( O `  A )  e.  NN  \/  ( O `  A
)  =  0 ) )
6239, 57, 61mpjaodan 761 1  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  ->  ( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965   ZZcz 10024   RR+crp 10354   ...cfz 10782    mod cmo 10973    || cdivides 12531   Basecbs 13148   0gc0g 13400   Grpcgrp 14362  .gcmg 14366   odcod 14840
This theorem is referenced by:  oddvdsi  14863  odcong  14864  odeq  14865  odmulgid  14867  odbezout  14871  gexdvds2  14896  gexod  14897  gexcl3  14898  odadd1  15140  odadd2  15141  oddvdssubg  15147  pgpfac1lem3a  15311  chrdvds  16482  dchrfi  20494  dchrabs  20499  dchrptlem2  20504  idomodle  27512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-od 14844
  Copyright terms: Public domain W3C validator