MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdsnn0 Unicode version

Theorem oddvdsnn0 15145
Description: The only multiples of  A that are equal to the identity are the multiples of the order of  A. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
oddvdsnn0  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) )

Proof of Theorem oddvdsnn0
StepHypRef Expression
1 0nn0 10200 . . . . 5  |-  0  e.  NN0
2 odcl.1 . . . . . . 7  |-  X  =  ( Base `  G
)
3 odcl.2 . . . . . . 7  |-  O  =  ( od `  G
)
4 odid.3 . . . . . . 7  |-  .x.  =  (.g
`  G )
5 odid.4 . . . . . . 7  |-  .0.  =  ( 0g `  G )
62, 3, 4, 5mndodcong 15143 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X )  /\  ( N  e. 
NN0  /\  0  e.  NN0 )  /\  ( O `
 A )  e.  NN )  ->  (
( O `  A
)  ||  ( N  -  0 )  <->  ( N  .x.  A )  =  ( 0  .x.  A ) ) )
763expia 1155 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X )  /\  ( N  e. 
NN0  /\  0  e.  NN0 ) )  ->  (
( O `  A
)  e.  NN  ->  ( ( O `  A
)  ||  ( N  -  0 )  <->  ( N  .x.  A )  =  ( 0  .x.  A ) ) ) )
81, 7mpanr2 666 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X )  /\  N  e.  NN0 )  ->  ( ( O `
 A )  e.  NN  ->  ( ( O `  A )  ||  ( N  -  0 )  <->  ( N  .x.  A )  =  ( 0  .x.  A ) ) ) )
983impa 1148 . . 3  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  e.  NN  ->  ( ( O `  A )  ||  ( N  -  0 )  <-> 
( N  .x.  A
)  =  ( 0 
.x.  A ) ) ) )
10 nn0cn 10195 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  CC )
11103ad2ant3 980 . . . . . 6  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  ->  N  e.  CC )
1211subid1d 9364 . . . . 5  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( N  -  0 )  =  N )
1312breq2d 4192 . . . 4  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  ||  ( N  -  0 )  <-> 
( O `  A
)  ||  N )
)
142, 5, 4mulg0 14858 . . . . . 6  |-  ( A  e.  X  ->  (
0  .x.  A )  =  .0.  )
15143ad2ant2 979 . . . . 5  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( 0  .x.  A
)  =  .0.  )
1615eqeq2d 2423 . . . 4  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( N  .x.  A )  =  ( 0  .x.  A )  <-> 
( N  .x.  A
)  =  .0.  )
)
1713, 16bibi12d 313 . . 3  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( ( O `
 A )  ||  ( N  -  0
)  <->  ( N  .x.  A )  =  ( 0  .x.  A ) )  <->  ( ( O `
 A )  ||  N 
<->  ( N  .x.  A
)  =  .0.  )
) )
189, 17sylibd 206 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  e.  NN  ->  ( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) ) )
19 simpr 448 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( O `  A
)  =  0 )
2019breq1d 4190 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( ( O `  A )  ||  N  <->  0 
||  N ) )
21 simpl3 962 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  ->  N  e.  NN0 )
22 nn0z 10268 . . . . 5  |-  ( N  e.  NN0  ->  N  e.  ZZ )
23 0dvds 12833 . . . . 5  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
2421, 22, 233syl 19 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( 0  ||  N  <->  N  =  0 ) )
2515adantr 452 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( 0  .x.  A
)  =  .0.  )
26 oveq1 6055 . . . . . . 7  |-  ( N  =  0  ->  ( N  .x.  A )  =  ( 0  .x.  A
) )
2726eqeq1d 2420 . . . . . 6  |-  ( N  =  0  ->  (
( N  .x.  A
)  =  .0.  <->  ( 0 
.x.  A )  =  .0.  ) )
2825, 27syl5ibrcom 214 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( N  =  0  ->  ( N  .x.  A )  =  .0.  ) )
292, 3, 4, 5odlem2 15140 . . . . . . . . . . . 12  |-  ( ( A  e.  X  /\  N  e.  NN  /\  ( N  .x.  A )  =  .0.  )  ->  ( O `  A )  e.  ( 1 ... N
) )
30293com23 1159 . . . . . . . . . . 11  |-  ( ( A  e.  X  /\  ( N  .x.  A )  =  .0.  /\  N  e.  NN )  ->  ( O `  A )  e.  ( 1 ... N
) )
31 elfznn 11044 . . . . . . . . . . 11  |-  ( ( O `  A )  e.  ( 1 ... N )  ->  ( O `  A )  e.  NN )
32 nnne0 9996 . . . . . . . . . . 11  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  =/=  0 )
3330, 31, 323syl 19 . . . . . . . . . 10  |-  ( ( A  e.  X  /\  ( N  .x.  A )  =  .0.  /\  N  e.  NN )  ->  ( O `  A )  =/=  0 )
34333expia 1155 . . . . . . . . 9  |-  ( ( A  e.  X  /\  ( N  .x.  A )  =  .0.  )  -> 
( N  e.  NN  ->  ( O `  A
)  =/=  0 ) )
35343ad2antl2 1120 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  -> 
( N  e.  NN  ->  ( O `  A
)  =/=  0 ) )
3635necon2bd 2624 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  -> 
( ( O `  A )  =  0  ->  -.  N  e.  NN ) )
37 simpl3 962 . . . . . . . . 9  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  ->  N  e.  NN0 )
38 elnn0 10187 . . . . . . . . 9  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
3937, 38sylib 189 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  -> 
( N  e.  NN  \/  N  =  0
) )
4039ord 367 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  -> 
( -.  N  e.  NN  ->  N  = 
0 ) )
4136, 40syld 42 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( N  .x.  A )  =  .0.  )  -> 
( ( O `  A )  =  0  ->  N  =  0 ) )
4241impancom 428 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( ( N  .x.  A )  =  .0. 
->  N  =  0
) )
4328, 42impbid 184 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( N  =  0  <-> 
( N  .x.  A
)  =  .0.  )
)
4420, 24, 433bitrd 271 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  =  0 )  -> 
( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) )
4544ex 424 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  =  0  ->  ( ( O `
 A )  ||  N 
<->  ( N  .x.  A
)  =  .0.  )
) )
462, 3odcl 15137 . . . 4  |-  ( A  e.  X  ->  ( O `  A )  e.  NN0 )
47463ad2ant2 979 . . 3  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( O `  A
)  e.  NN0 )
48 elnn0 10187 . . 3  |-  ( ( O `  A )  e.  NN0  <->  ( ( O `
 A )  e.  NN  \/  ( O `
 A )  =  0 ) )
4947, 48sylib 189 . 2  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  e.  NN  \/  ( O `  A
)  =  0 ) )
5018, 45, 49mpjaod 371 1  |-  ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  -> 
( ( O `  A )  ||  N  <->  ( N  .x.  A )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   CCcc 8952   0cc0 8954   1c1 8955    - cmin 9255   NNcn 9964   NN0cn0 10185   ZZcz 10246   ...cfz 11007    || cdivides 12815   Basecbs 13432   0gc0g 13686   Mndcmnd 14647  .gcmg 14652   odcod 15126
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-n0 10186  df-z 10247  df-uz 10453  df-rp 10577  df-fz 11008  df-fl 11165  df-mod 11214  df-seq 11287  df-dvds 12816  df-0g 13690  df-mnd 14653  df-mulg 14778  df-od 15130
  Copyright terms: Public domain W3C validator