MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Unicode version

Theorem oddvdssubg 15390
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1  |-  O  =  ( od `  G
)
oddvdssubg.1  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
oddvdssubg  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
Distinct variable groups:    x, B    x, G    x, N    x, O

Proof of Theorem oddvdssubg
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3364 . . 3  |-  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
21a1i 11 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  C_  B
)
3 ablgrp 15337 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
43adantr 452 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  G  e.  Grp )
5 oddvdssubg.1 . . . . . 6  |-  B  =  ( Base `  G
)
6 eqid 2380 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
75, 6grpidcl 14753 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
84, 7syl 16 . . . 4  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( 0g `  G )  e.  B )
9 torsubg.1 . . . . . . 7  |-  O  =  ( od `  G
)
109, 6od1 15115 . . . . . 6  |-  ( G  e.  Grp  ->  ( O `  ( 0g `  G ) )  =  1 )
114, 10syl 16 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( O `  ( 0g `  G ) )  =  1 )
12 1dvds 12784 . . . . . 6  |-  ( N  e.  ZZ  ->  1  ||  N )
1312adantl 453 . . . . 5  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  1  ||  N )
1411, 13eqbrtrd 4166 . . . 4  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( O `  ( 0g `  G ) )  ||  N )
15 fveq2 5661 . . . . . 6  |-  ( x  =  ( 0g `  G )  ->  ( O `  x )  =  ( O `  ( 0g `  G ) ) )
1615breq1d 4156 . . . . 5  |-  ( x  =  ( 0g `  G )  ->  (
( O `  x
)  ||  N  <->  ( O `  ( 0g `  G
) )  ||  N
) )
1716elrab 3028 . . . 4  |-  ( ( 0g `  G )  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( ( 0g
`  G )  e.  B  /\  ( O `
 ( 0g `  G ) )  ||  N ) )
188, 14, 17sylanbrc 646 . . 3  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( 0g `  G )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } )
19 ne0i 3570 . . 3  |-  ( ( 0g `  G )  e.  { x  e.  B  |  ( O `
 x )  ||  N }  ->  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/) )
2018, 19syl 16 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/) )
21 fveq2 5661 . . . . . 6  |-  ( x  =  y  ->  ( O `  x )  =  ( O `  y ) )
2221breq1d 4156 . . . . 5  |-  ( x  =  y  ->  (
( O `  x
)  ||  N  <->  ( O `  y )  ||  N
) )
2322elrab 3028 . . . 4  |-  ( y  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( y  e.  B  /\  ( O `
 y )  ||  N ) )
24 fveq2 5661 . . . . . . . . 9  |-  ( x  =  z  ->  ( O `  x )  =  ( O `  z ) )
2524breq1d 4156 . . . . . . . 8  |-  ( x  =  z  ->  (
( O `  x
)  ||  N  <->  ( O `  z )  ||  N
) )
2625elrab 3028 . . . . . . 7  |-  ( z  e.  { x  e.  B  |  ( O `
 x )  ||  N }  <->  ( z  e.  B  /\  ( O `
 z )  ||  N ) )
274adantr 452 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  ->  G  e.  Grp )
2827adantr 452 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  G  e.  Grp )
29 simprl 733 . . . . . . . . . 10  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
y  e.  B )
3029adantr 452 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  y  e.  B )
31 simprl 733 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  z  e.  B )
32 eqid 2380 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
335, 32grpcl 14738 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  G ) z )  e.  B )
3428, 30, 31, 33syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( y
( +g  `  G ) z )  e.  B
)
35 simplll 735 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  G  e.  Abel )
36 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  N  e.  ZZ )
37 eqid 2380 . . . . . . . . . . . 12  |-  (.g `  G
)  =  (.g `  G
)
385, 37, 32mulgdi 15369 . . . . . . . . . . 11  |-  ( ( G  e.  Abel  /\  ( N  e.  ZZ  /\  y  e.  B  /\  z  e.  B ) )  -> 
( N (.g `  G
) ( y ( +g  `  G ) z ) )  =  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) ) )
3935, 36, 30, 31, 38syl13anc 1186 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) ) )
40 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  y
)  ||  N )
4140adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  y )  ||  N
)
425, 9, 37, 6oddvds 15105 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  y  e.  B  /\  N  e.  ZZ )  ->  ( ( O `  y )  ||  N  <->  ( N (.g `  G ) y )  =  ( 0g
`  G ) ) )
4328, 30, 36, 42syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  y )  ||  N  <->  ( N (.g `  G ) y )  =  ( 0g `  G ) ) )
4441, 43mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) y )  =  ( 0g
`  G ) )
45 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  z )  ||  N
)
465, 9, 37, 6oddvds 15105 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  z  e.  B  /\  N  e.  ZZ )  ->  ( ( O `  z )  ||  N  <->  ( N (.g `  G ) z )  =  ( 0g
`  G ) ) )
4728, 31, 36, 46syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  z )  ||  N  <->  ( N (.g `  G ) z )  =  ( 0g `  G ) ) )
4845, 47mpbid 202 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) z )  =  ( 0g
`  G ) )
4944, 48oveq12d 6031 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( N (.g `  G ) y ) ( +g  `  G
) ( N (.g `  G ) z ) )  =  ( ( 0g `  G ) ( +g  `  G
) ( 0g `  G ) ) )
5028, 7syl 16 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( 0g `  G )  e.  B
)
515, 32, 6grplid 14755 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( 0g `  G )  e.  B )  -> 
( ( 0g `  G ) ( +g  `  G ) ( 0g
`  G ) )  =  ( 0g `  G ) )
5228, 50, 51syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( 0g `  G ) ( +g  `  G ) ( 0g `  G
) )  =  ( 0g `  G ) )
5339, 49, 523eqtrd 2416 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( 0g `  G ) )
545, 9, 37, 6oddvds 15105 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( y ( +g  `  G ) z )  e.  B  /\  N  e.  ZZ )  ->  (
( O `  (
y ( +g  `  G
) z ) ) 
||  N  <->  ( N
(.g `  G ) ( y ( +g  `  G
) z ) )  =  ( 0g `  G ) ) )
5528, 34, 36, 54syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( ( O `  ( y
( +g  `  G ) z ) )  ||  N 
<->  ( N (.g `  G
) ( y ( +g  `  G ) z ) )  =  ( 0g `  G
) ) )
5653, 55mpbird 224 . . . . . . . 8  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( O `  ( y ( +g  `  G ) z ) )  ||  N )
57 fveq2 5661 . . . . . . . . . 10  |-  ( x  =  ( y ( +g  `  G ) z )  ->  ( O `  x )  =  ( O `  ( y ( +g  `  G ) z ) ) )
5857breq1d 4156 . . . . . . . . 9  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
( O `  x
)  ||  N  <->  ( O `  ( y ( +g  `  G ) z ) )  ||  N ) )
5958elrab 3028 . . . . . . . 8  |-  ( ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } 
<->  ( ( y ( +g  `  G ) z )  e.  B  /\  ( O `  (
y ( +g  `  G
) z ) ) 
||  N ) )
6034, 56, 59sylanbrc 646 . . . . . . 7  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  ( z  e.  B  /\  ( O `  z
)  ||  N )
)  ->  ( y
( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }
)
6126, 60sylan2b 462 . . . . . 6  |-  ( ( ( ( G  e. 
Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  /\  z  e.  { x  e.  B  |  ( O `  x )  ||  N } )  -> 
( y ( +g  `  G ) z )  e.  { x  e.  B  |  ( O `
 x )  ||  N } )
6261ralrimiva 2725 . . . . 5  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  ->  A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } )
63 eqid 2380 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
645, 63grpinvcl 14770 . . . . . . 7  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( ( inv g `  G ) `  y
)  e.  B )
6527, 29, 64syl2anc 643 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( ( inv g `  G ) `  y
)  e.  B )
669, 63, 5odinv 15117 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  y  e.  B )  ->  ( O `  (
( inv g `  G ) `  y
) )  =  ( O `  y ) )
6727, 29, 66syl2anc 643 . . . . . . 7  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  (
( inv g `  G ) `  y
) )  =  ( O `  y ) )
6867, 40eqbrtrd 4166 . . . . . 6  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( O `  (
( inv g `  G ) `  y
) )  ||  N
)
69 fveq2 5661 . . . . . . . 8  |-  ( x  =  ( ( inv g `  G ) `
 y )  -> 
( O `  x
)  =  ( O `
 ( ( inv g `  G ) `
 y ) ) )
7069breq1d 4156 . . . . . . 7  |-  ( x  =  ( ( inv g `  G ) `
 y )  -> 
( ( O `  x )  ||  N  <->  ( O `  ( ( inv g `  G
) `  y )
)  ||  N )
)
7170elrab 3028 . . . . . 6  |-  ( ( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N }  <->  ( (
( inv g `  G ) `  y
)  e.  B  /\  ( O `  ( ( inv g `  G
) `  y )
)  ||  N )
)
7265, 68, 71sylanbrc 646 . . . . 5  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } )
7362, 72jca 519 . . . 4  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  ( y  e.  B  /\  ( O `
 y )  ||  N ) )  -> 
( A. z  e. 
{ x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) )
7423, 73sylan2b 462 . . 3  |-  ( ( ( G  e.  Abel  /\  N  e.  ZZ )  /\  y  e.  {
x  e.  B  | 
( O `  x
)  ||  N }
)  ->  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G
) z )  e. 
{ x  e.  B  |  ( O `  x )  ||  N }  /\  ( ( inv g `  G ) `
 y )  e. 
{ x  e.  B  |  ( O `  x )  ||  N } ) )
7574ralrimiva 2725 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) )
765, 32, 63issubg2 14879 . . 3  |-  ( G  e.  Grp  ->  ( { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
)  <->  ( { x  e.  B  |  ( O `  x )  ||  N }  C_  B  /\  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/)  /\  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) ) ) )
774, 76syl 16 . 2  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  ( { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G
)  <->  ( { x  e.  B  |  ( O `  x )  ||  N }  C_  B  /\  { x  e.  B  |  ( O `  x )  ||  N }  =/=  (/)  /\  A. y  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( A. z  e.  { x  e.  B  |  ( O `  x )  ||  N }  ( y ( +g  `  G ) z )  e.  {
x  e.  B  | 
( O `  x
)  ||  N }  /\  ( ( inv g `  G ) `  y
)  e.  { x  e.  B  |  ( O `  x )  ||  N } ) ) ) )
782, 20, 75, 77mpbir3and 1137 1  |-  ( ( G  e.  Abel  /\  N  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  N }  e.  (SubGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   A.wral 2642   {crab 2646    C_ wss 3256   (/)c0 3564   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   1c1 8917   ZZcz 10207    || cdivides 12772   Basecbs 13389   +g cplusg 13449   0gc0g 13643   Grpcgrp 14605   inv gcminusg 14606  .gcmg 14609  SubGrpcsubg 14858   odcod 15083   Abelcabel 15333
This theorem is referenced by:  ablfacrplem  15543  ablfacrp  15544  ablfacrp2  15545  ablfac1b  15548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-fz 10969  df-fzo 11059  df-fl 11122  df-mod 11171  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-dvds 12773  df-gcd 12927  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-sbg 14734  df-mulg 14735  df-subg 14861  df-od 15087  df-cmn 15334  df-abl 15335
  Copyright terms: Public domain W3C validator