Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o1 Unicode version

Theorem odf1o1 14899
 Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x
odf1o1.t .g
odf1o1.o
odf1o1.k mrClsSubGrp
Assertion
Ref Expression
odf1o1
Distinct variable groups:   ,   ,   ,   ,   ,   ,

Proof of Theorem odf1o1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . . . . 7
2 odf1o1.x . . . . . . . 8
32subgacs 14668 . . . . . . 7 SubGrp ACS
4 acsmre 13570 . . . . . . 7 SubGrp ACS SubGrp Moore
51, 3, 43syl 18 . . . . . 6 SubGrp Moore
6 simpl2 959 . . . . . . 7
76snssd 3776 . . . . . 6
8 odf1o1.k . . . . . . 7 mrClsSubGrp
98mrccl 13529 . . . . . 6 SubGrp Moore SubGrp
105, 7, 9syl2anc 642 . . . . 5 SubGrp
11 simpr 447 . . . . 5
128mrcssid 13535 . . . . . . 7 SubGrp Moore
135, 7, 12syl2anc 642 . . . . . 6
14 snidg 3678 . . . . . . 7
156, 14syl 15 . . . . . 6
1613, 15sseldd 3194 . . . . 5
17 odf1o1.t . . . . . 6 .g
1817subgmulgcl 14650 . . . . 5 SubGrp
1910, 11, 16, 18syl3anc 1182 . . . 4
2019ex 423 . . 3
21 simpl3 960 . . . . . . 7
2221breq1d 4049 . . . . . 6
23 zsubcl 10077 . . . . . . . 8
2423adantl 452 . . . . . . 7
25 0dvds 12565 . . . . . . 7
2624, 25syl 15 . . . . . 6
2722, 26bitrd 244 . . . . 5
28 simpl1 958 . . . . . 6
29 simpl2 959 . . . . . 6
30 simprl 732 . . . . . 6
31 simprr 733 . . . . . 6
32 odf1o1.o . . . . . . 7
33 eqid 2296 . . . . . . 7
342, 32, 17, 33odcong 14880 . . . . . 6
3528, 29, 30, 31, 34syl112anc 1186 . . . . 5
36 zcn 10045 . . . . . . 7
37 zcn 10045 . . . . . . 7
38 subeq0 9089 . . . . . . 7
3936, 37, 38syl2an 463 . . . . . 6
4039adantl 452 . . . . 5
4127, 35, 403bitr3d 274 . . . 4
4241ex 423 . . 3
4320, 42dom2lem 6917 . 2
44 f1f 5453 . . . 4
4543, 44syl 15 . . 3
46 eqid 2296 . . . . . 6
472, 17, 46, 8cycsubg2 14670 . . . . 5
48473adant3 975 . . . 4
4948eqcomd 2301 . . 3
50 dffo2 5471 . . 3
5145, 49, 50sylanbrc 645 . 2
52 df-f1o 5278 . 2
5343, 51, 52sylanbrc 645 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   w3a 934   wceq 1632   wcel 1696   wss 3165  csn 3653   class class class wbr 4039   cmpt 4093   crn 4706  wf 5267  wf1 5268  wfo 5269  wf1o 5270  cfv 5271  (class class class)co 5874  cc 8751  cc0 8753   cmin 9053  cz 10040   cdivides 12547  cbs 13164  c0g 13416  Moorecmre 13500  mrClscmrc 13501  ACScacs 13503  cgrp 14378  .gcmg 14382  SubGrpcsubg 14631  cod 14856 This theorem is referenced by:  odhash  14901 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-mulg 14508  df-subg 14634  df-od 14860
 Copyright terms: Public domain W3C validator