MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmodnn0 Structured version   Unicode version

Theorem odmodnn0 15170
Description: Reduce the argument of a group multiple by modding out the order of the element. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1  |-  X  =  ( Base `  G
)
odcl.2  |-  O  =  ( od `  G
)
odid.3  |-  .x.  =  (.g
`  G )
odid.4  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
odmodnn0  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )

Proof of Theorem odmodnn0
StepHypRef Expression
1 simpl1 960 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  G  e.  Mnd )
2 nnnn0 10220 . . . . . 6  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  NN0 )
32adantl 453 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  NN0 )
4 simpl3 962 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  NN0 )
54nn0red 10267 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  RR )
6 nnrp 10613 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR+ )
76adantl 453 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR+ )
85, 7rerpdivcld 10667 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  /  ( O `  A )
)  e.  RR )
94nn0ge0d 10269 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  N )
10 nnre 9999 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  ( O `  A )  e.  RR )
1110adantl 453 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  RR )
12 nngt0 10021 . . . . . . . 8  |-  ( ( O `  A )  e.  NN  ->  0  <  ( O `  A
) )
1312adantl 453 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <  ( O `  A ) )
14 divge0 9871 . . . . . . 7  |-  ( ( ( N  e.  RR  /\  0  <_  N )  /\  ( ( O `  A )  e.  RR  /\  0  <  ( O `
 A ) ) )  ->  0  <_  ( N  /  ( O `
 A ) ) )
155, 9, 11, 13, 14syl22anc 1185 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
0  <_  ( N  /  ( O `  A ) ) )
16 flge0nn0 11217 . . . . . 6  |-  ( ( ( N  /  ( O `  A )
)  e.  RR  /\  0  <_  ( N  / 
( O `  A
) ) )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
178, 15, 16syl2anc 643 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )
183, 17nn0mulcld 10271 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  NN0 )
194nn0zd 10365 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  ZZ )
20 zmodcl 11258 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
2119, 20sylancom 649 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  e.  NN0 )
22 simpl2 961 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  A  e.  X )
23 odcl.1 . . . . 5  |-  X  =  ( Base `  G
)
24 odid.3 . . . . 5  |-  .x.  =  (.g
`  G )
25 eqid 2435 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
2623, 24, 25mulgnn0dir 14905 . . . 4  |-  ( ( G  e.  Mnd  /\  ( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  e.  NN0  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X ) )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
271, 18, 21, 22, 26syl13anc 1186 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( ( ( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) ) 
.x.  A ) ( +g  `  G ) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
2811recnd 9106 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( O `  A
)  e.  CC )
2917nn0cnd 10268 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( |_ `  ( N  /  ( O `  A ) ) )  e.  CC )
3028, 29mulcomd 9101 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  =  ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) ) )
3130oveq1d 6088 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  ( ( ( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A ) )
3223, 24mulgnn0ass 14911 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( ( |_ `  ( N  /  ( O `  A )
) )  e.  NN0  /\  ( O `  A
)  e.  NN0  /\  A  e.  X )
)  ->  ( (
( |_ `  ( N  /  ( O `  A ) ) )  x.  ( O `  A ) )  .x.  A )  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
331, 17, 3, 22, 32syl13anc 1186 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  ( ( O `
 A )  .x.  A ) ) )
34 odcl.2 . . . . . . . . . 10  |-  O  =  ( od `  G
)
35 odid.4 . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
3623, 34, 24, 35odid 15168 . . . . . . . . 9  |-  ( A  e.  X  ->  (
( O `  A
)  .x.  A )  =  .0.  )
3722, 36syl 16 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  .x.  A
)  =  .0.  )
3837oveq2d 6089 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  ( ( |_ `  ( N  /  ( O `  A ) ) ) 
.x.  .0.  ) )
3923, 24, 35mulgnn0z 14902 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( |_ `  ( N  /  ( O `  A ) ) )  e.  NN0 )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
401, 17, 39syl2anc 643 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  .0.  )  =  .0.  )
4138, 40eqtrd 2467 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( |_ `  ( N  /  ( O `  A )
) )  .x.  (
( O `  A
)  .x.  A )
)  =  .0.  )
4233, 41eqtrd 2467 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( |_
`  ( N  / 
( O `  A
) ) )  x.  ( O `  A
) )  .x.  A
)  =  .0.  )
4331, 42eqtrd 2467 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  .x.  A )  =  .0.  )
4443oveq1d 6088 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  .x.  A ) ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  (  .0.  ( +g  `  G ) ( ( N  mod  ( O `  A )
)  .x.  A )
) )
4527, 44eqtrd 2467 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  (  .0.  ( +g  `  G
) ( ( N  mod  ( O `  A ) )  .x.  A ) ) )
46 modval 11244 . . . . . 6  |-  ( ( N  e.  RR  /\  ( O `  A )  e.  RR+ )  ->  ( N  mod  ( O `  A ) )  =  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) )
475, 7, 46syl2anc 643 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( N  mod  ( O `  A )
)  =  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )
4847oveq2d 6089 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  -  (
( O `  A
)  x.  ( |_
`  ( N  / 
( O `  A
) ) ) ) ) ) )
4918nn0cnd 10268 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( O `  A )  x.  ( |_ `  ( N  / 
( O `  A
) ) ) )  e.  CC )
504nn0cnd 10268 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  ->  N  e.  CC )
5149, 50pncan3d 9406 . . . 4  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  -  ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) ) ) )  =  N )
5248, 51eqtrd 2467 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( O `
 A )  x.  ( |_ `  ( N  /  ( O `  A ) ) ) )  +  ( N  mod  ( O `  A ) ) )  =  N )
5352oveq1d 6088 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( ( ( O `  A )  x.  ( |_ `  ( N  /  ( O `  A )
) ) )  +  ( N  mod  ( O `  A )
) )  .x.  A
)  =  ( N 
.x.  A ) )
5423, 24mulgnn0cl 14898 . . . 4  |-  ( ( G  e.  Mnd  /\  ( N  mod  ( O `
 A ) )  e.  NN0  /\  A  e.  X )  ->  (
( N  mod  ( O `  A )
)  .x.  A )  e.  X )
551, 21, 22, 54syl3anc 1184 . . 3  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )
5623, 25, 35mndlid 14708 . . 3  |-  ( ( G  e.  Mnd  /\  ( ( N  mod  ( O `  A ) )  .x.  A )  e.  X )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
571, 55, 56syl2anc 643 . 2  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
(  .0.  ( +g  `  G ) ( ( N  mod  ( O `
 A ) ) 
.x.  A ) )  =  ( ( N  mod  ( O `  A ) )  .x.  A ) )
5845, 53, 573eqtr3rd 2476 1  |-  ( ( ( G  e.  Mnd  /\  A  e.  X  /\  N  e.  NN0 )  /\  ( O `  A )  e.  NN )  -> 
( ( N  mod  ( O `  A ) )  .x.  A )  =  ( N  .x.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   NN0cn0 10213   ZZcz 10274   RR+crp 10604   |_cfl 11193    mod cmo 11242   Basecbs 13461   +g cplusg 13521   0gc0g 13715   Mndcmnd 14676  .gcmg 14681   odcod 15155
This theorem is referenced by:  mndodcong  15172
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fl 11194  df-mod 11243  df-seq 11316  df-0g 13719  df-mnd 14682  df-mulg 14807  df-od 15159
  Copyright terms: Public domain W3C validator