MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odmulgid Unicode version

Theorem odmulgid 14960
Description: A relationship between the order of a multiple and the order of the basepoint. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odmulgid.1  |-  X  =  ( Base `  G
)
odmulgid.2  |-  O  =  ( od `  G
)
odmulgid.3  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
odmulgid  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( O `
 ( N  .x.  A ) )  ||  K 
<->  ( O `  A
)  ||  ( K  x.  N ) ) )

Proof of Theorem odmulgid
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  G  e.  Grp )
2 simpr 447 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  K  e.  ZZ )
3 simpl3 960 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  N  e.  ZZ )
4 simpl2 959 . . . 4  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  A  e.  X
)
5 odmulgid.1 . . . . 5  |-  X  =  ( Base `  G
)
6 odmulgid.3 . . . . 5  |-  .x.  =  (.g
`  G )
75, 6mulgass 14690 . . . 4  |-  ( ( G  e.  Grp  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  X )
)  ->  ( ( K  x.  N )  .x.  A )  =  ( K  .x.  ( N 
.x.  A ) ) )
81, 2, 3, 4, 7syl13anc 1184 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( K  x.  N )  .x.  A )  =  ( K  .x.  ( N 
.x.  A ) ) )
98eqeq1d 2366 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( ( K  x.  N ) 
.x.  A )  =  ( 0g `  G
)  <->  ( K  .x.  ( N  .x.  A ) )  =  ( 0g
`  G ) ) )
102, 3zmulcld 10212 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( K  x.  N )  e.  ZZ )
11 odmulgid.2 . . . 4  |-  O  =  ( od `  G
)
12 eqid 2358 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
135, 11, 6, 12oddvds 14955 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( K  x.  N
)  e.  ZZ )  ->  ( ( O `
 A )  ||  ( K  x.  N
)  <->  ( ( K  x.  N )  .x.  A )  =  ( 0g `  G ) ) )
141, 4, 10, 13syl3anc 1182 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( O `
 A )  ||  ( K  x.  N
)  <->  ( ( K  x.  N )  .x.  A )  =  ( 0g `  G ) ) )
155, 6mulgcl 14677 . . . 4  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  A  e.  X )  ->  ( N  .x.  A )  e.  X )
161, 3, 4, 15syl3anc 1182 . . 3  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( N  .x.  A )  e.  X
)
175, 11, 6, 12oddvds 14955 . . 3  |-  ( ( G  e.  Grp  /\  ( N  .x.  A )  e.  X  /\  K  e.  ZZ )  ->  (
( O `  ( N  .x.  A ) ) 
||  K  <->  ( K  .x.  ( N  .x.  A
) )  =  ( 0g `  G ) ) )
181, 16, 2, 17syl3anc 1182 . 2  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( O `
 ( N  .x.  A ) )  ||  K 
<->  ( K  .x.  ( N  .x.  A ) )  =  ( 0g `  G ) ) )
199, 14, 183bitr4rd 277 1  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  N  e.  ZZ )  /\  K  e.  ZZ )  ->  ( ( O `
 ( N  .x.  A ) )  ||  K 
<->  ( O `  A
)  ||  ( K  x.  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   class class class wbr 4102   ` cfv 5334  (class class class)co 5942    x. cmul 8829   ZZcz 10113    || cdivides 12622   Basecbs 13239   0gc0g 13493   Grpcgrp 14455  .gcmg 14459   odcod 14933
This theorem is referenced by:  odmulg2  14961  odmulg  14962  ablfacrp  15394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-sup 7281  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-rp 10444  df-fz 10872  df-fl 11014  df-mod 11063  df-seq 11136  df-exp 11195  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-dvds 12623  df-0g 13497  df-mnd 14460  df-grp 14582  df-minusg 14583  df-sbg 14584  df-mulg 14585  df-od 14937
  Copyright terms: Public domain W3C validator