MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odngen Unicode version

Theorem odngen 14888
Description: A cyclic subgroup of size  ( O `  A ) has  ( phi `  ( O `  A
) ) generators. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
odhash.x  |-  X  =  ( Base `  G
)
odhash.o  |-  O  =  ( od `  G
)
odhash.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
Assertion
Ref Expression
odngen  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( # `  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } )  =  ( phi `  ( O `  A ) ) )
Distinct variable groups:    x, A    x, G    x, K    x, O    x, X

Proof of Theorem odngen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) )  =  ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) )
21mptpreima 5166 . . 3  |-  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } )  =  { y  e.  ( 0..^ ( O `  A ) )  |  ( y (.g `  G
) A )  e. 
{ x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } }
32fveq2i 5528 . 2  |-  ( # `  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } ) )  =  ( # `  { y  e.  ( 0..^ ( O `  A ) )  |  ( y (.g `  G
) A )  e. 
{ x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } }
)
4 odhash.x . . . . 5  |-  X  =  ( Base `  G
)
5 eqid 2283 . . . . 5  |-  (.g `  G
)  =  (.g `  G
)
6 odhash.o . . . . 5  |-  O  =  ( od `  G
)
7 odhash.k . . . . 5  |-  K  =  (mrCls `  (SubGrp `  G
) )
84, 5, 6, 7odf1o2 14884 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) : ( 0..^ ( O `  A ) ) -1-1-onto-> ( K `
 { A }
) )
9 f1ocnv 5485 . . . 4  |-  ( ( y  e.  ( 0..^ ( O `  A
) )  |->  ( y (.g `  G ) A ) ) : ( 0..^ ( O `  A ) ) -1-1-onto-> ( K `
 { A }
)  ->  `' (
y  e.  ( 0..^ ( O `  A
) )  |->  ( y (.g `  G ) A ) ) : ( K `  { A } ) -1-1-onto-> ( 0..^ ( O `
 A ) ) )
10 f1of1 5471 . . . 4  |-  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) : ( K `  { A } ) -1-1-onto-> ( 0..^ ( O `
 A ) )  ->  `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) : ( K `
 { A }
) -1-1-> ( 0..^ ( O `  A ) ) )
118, 9, 103syl 18 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  `' ( y  e.  ( 0..^ ( O `
 A ) ) 
|->  ( y (.g `  G
) A ) ) : ( K `  { A } ) -1-1-> ( 0..^ ( O `  A ) ) )
12 ssrab2 3258 . . 3  |-  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  C_  ( K `  { A } )
13 fvex 5539 . . . . . 6  |-  ( K `
 { A }
)  e.  _V
1413rabex 4165 . . . . 5  |-  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  e.  _V
1514f1imaen 6923 . . . 4  |-  ( ( `' ( y  e.  ( 0..^ ( O `
 A ) ) 
|->  ( y (.g `  G
) A ) ) : ( K `  { A } ) -1-1-> ( 0..^ ( O `  A ) )  /\  { x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) }  C_  ( K `  { A } ) )  -> 
( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } ) 
~~  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } )
16 hasheni 11347 . . . 4  |-  ( ( `' ( y  e.  ( 0..^ ( O `
 A ) ) 
|->  ( y (.g `  G
) A ) )
" { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } ) 
~~  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  ->  (
# `  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )  =  ( # `  {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )
1715, 16syl 15 . . 3  |-  ( ( `' ( y  e.  ( 0..^ ( O `
 A ) ) 
|->  ( y (.g `  G
) A ) ) : ( K `  { A } ) -1-1-> ( 0..^ ( O `  A ) )  /\  { x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) }  C_  ( K `  { A } ) )  -> 
( # `  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )  =  ( # `  {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )
1811, 12, 17sylancl 643 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( # `  ( `' ( y  e.  ( 0..^ ( O `  A ) )  |->  ( y (.g `  G ) A ) ) " {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )  =  ( # `  {
x  e.  ( K `
 { A }
)  |  ( O `
 x )  =  ( O `  A
) } ) )
19 simpl1 958 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  ->  G  e.  Grp )
20 simpl2 959 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  ->  A  e.  X )
21 elfzoelz 10875 . . . . . . . . 9  |-  ( y  e.  ( 0..^ ( O `  A ) )  ->  y  e.  ZZ )
2221adantl 452 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
y  e.  ZZ )
234, 5, 7cycsubg2cl 14655 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  y  e.  ZZ )  ->  ( y (.g `  G
) A )  e.  ( K `  { A } ) )
2419, 20, 22, 23syl3anc 1182 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
( y (.g `  G
) A )  e.  ( K `  { A } ) )
25 fveq2 5525 . . . . . . . . 9  |-  ( x  =  ( y (.g `  G ) A )  ->  ( O `  x )  =  ( O `  ( y (.g `  G ) A ) ) )
2625eqeq1d 2291 . . . . . . . 8  |-  ( x  =  ( y (.g `  G ) A )  ->  ( ( O `
 x )  =  ( O `  A
)  <->  ( O `  ( y (.g `  G
) A ) )  =  ( O `  A ) ) )
2726elrab3 2924 . . . . . . 7  |-  ( ( y (.g `  G ) A )  e.  ( K `
 { A }
)  ->  ( (
y (.g `  G ) A )  e.  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  <->  ( O `  ( y (.g `  G
) A ) )  =  ( O `  A ) ) )
2824, 27syl 15 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
( ( y (.g `  G ) A )  e.  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  <->  ( O `  ( y (.g `  G
) A ) )  =  ( O `  A ) ) )
29 simpl3 960 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
( O `  A
)  e.  NN )
304, 6, 5odmulgeq 14870 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  y  e.  ZZ )  /\  ( O `  A
)  e.  NN )  ->  ( ( O `
 ( y (.g `  G ) A ) )  =  ( O `
 A )  <->  ( y  gcd  ( O `  A
) )  =  1 ) )
3119, 20, 22, 29, 30syl31anc 1185 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
( ( O `  ( y (.g `  G
) A ) )  =  ( O `  A )  <->  ( y  gcd  ( O `  A
) )  =  1 ) )
3228, 31bitrd 244 . . . . 5  |-  ( ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  /\  y  e.  ( 0..^ ( O `  A
) ) )  -> 
( ( y (.g `  G ) A )  e.  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) }  <->  ( y  gcd  ( O `  A
) )  =  1 ) )
3332rabbidva 2779 . . . 4  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  ->  { y  e.  ( 0..^ ( O `  A ) )  |  ( y (.g `  G
) A )  e. 
{ x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } }  =  { y  e.  ( 0..^ ( O `  A ) )  |  ( y  gcd  ( O `  A )
)  =  1 } )
3433fveq2d 5529 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( # `  { y  e.  ( 0..^ ( O `  A ) )  |  ( y (.g `  G ) A )  e.  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } }
)  =  ( # `  { y  e.  ( 0..^ ( O `  A ) )  |  ( y  gcd  ( O `  A )
)  =  1 } ) )
35 dfphi2 12842 . . . 4  |-  ( ( O `  A )  e.  NN  ->  ( phi `  ( O `  A ) )  =  ( # `  {
y  e.  ( 0..^ ( O `  A
) )  |  ( y  gcd  ( O `
 A ) )  =  1 } ) )
36353ad2ant3 978 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( phi `  ( O `  A )
)  =  ( # `  { y  e.  ( 0..^ ( O `  A ) )  |  ( y  gcd  ( O `  A )
)  =  1 } ) )
3734, 36eqtr4d 2318 . 2  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( # `  { y  e.  ( 0..^ ( O `  A ) )  |  ( y (.g `  G ) A )  e.  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } }
)  =  ( phi `  ( O `  A
) ) )
383, 18, 373eqtr3a 2339 1  |-  ( ( G  e.  Grp  /\  A  e.  X  /\  ( O `  A )  e.  NN )  -> 
( # `  { x  e.  ( K `  { A } )  |  ( O `  x )  =  ( O `  A ) } )  =  ( phi `  ( O `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   {csn 3640   class class class wbr 4023    e. cmpt 4077   `'ccnv 4688   "cima 4692   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    ~~ cen 6860   0cc0 8737   1c1 8738   NNcn 9746   ZZcz 10024  ..^cfzo 10870   #chash 11337    gcd cgcd 12685   phicphi 12832   Basecbs 13148  mrClscmrc 13485   Grpcgrp 14362  .gcmg 14366  SubGrpcsubg 14615   odcod 14840
This theorem is referenced by:  proot1hash  27519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-phi 12834  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mulg 14492  df-subg 14618  df-od 14844
  Copyright terms: Public domain W3C validator