MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odupos Structured version   Unicode version

Theorem odupos 14554
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypothesis
Ref Expression
odupos.d  |-  D  =  (ODual `  O )
Assertion
Ref Expression
odupos  |-  ( O  e.  Poset  ->  D  e.  Poset
)

Proof of Theorem odupos
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odupos.d . . . 4  |-  D  =  (ODual `  O )
2 fvex 5734 . . . 4  |-  (ODual `  O )  e.  _V
31, 2eqeltri 2505 . . 3  |-  D  e. 
_V
43a1i 11 . 2  |-  ( O  e.  Poset  ->  D  e.  _V )
5 eqid 2435 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
61, 5odubas 14552 . . 3  |-  ( Base `  O )  =  (
Base `  D )
76a1i 11 . 2  |-  ( O  e.  Poset  ->  ( Base `  O )  =  (
Base `  D )
)
8 eqid 2435 . . . 4  |-  ( le
`  O )  =  ( le `  O
)
91, 8oduleval 14550 . . 3  |-  `' ( le `  O )  =  ( le `  D )
109a1i 11 . 2  |-  ( O  e.  Poset  ->  `' ( le `  O )  =  ( le `  D
) )
115, 8posref 14400 . . 3  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
) )  ->  a
( le `  O
) a )
12 vex 2951 . . . 4  |-  a  e. 
_V
1312, 12brcnv 5047 . . 3  |-  ( a `' ( le `  O ) a  <->  a ( le `  O ) a )
1411, 13sylibr 204 . 2  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
) )  ->  a `' ( le `  O ) a )
15 vex 2951 . . . . 5  |-  b  e. 
_V
1612, 15brcnv 5047 . . . 4  |-  ( a `' ( le `  O ) b  <->  b ( le `  O ) a )
1715, 12brcnv 5047 . . . 4  |-  ( b `' ( le `  O ) a  <->  a ( le `  O ) b )
1816, 17anbi12ci 680 . . 3  |-  ( ( a `' ( le
`  O ) b  /\  b `' ( le `  O ) a )  <->  ( a
( le `  O
) b  /\  b
( le `  O
) a ) )
195, 8posasymb 14401 . . . 4  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a ( le `  O ) b  /\  b ( le `  O ) a )  <-> 
a  =  b ) )
2019biimpd 199 . . 3  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a ( le `  O ) b  /\  b ( le `  O ) a )  ->  a  =  b ) )
2118, 20syl5bi 209 . 2  |-  ( ( O  e.  Poset  /\  a  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )
)  ->  ( (
a `' ( le
`  O ) b  /\  b `' ( le `  O ) a )  ->  a  =  b ) )
22 3anrev 947 . . . 4  |-  ( ( a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
)  <->  ( c  e.  ( Base `  O
)  /\  b  e.  ( Base `  O )  /\  a  e.  ( Base `  O ) ) )
235, 8postr 14402 . . . 4  |-  ( ( O  e.  Poset  /\  (
c  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  a  e.  ( Base `  O )
) )  ->  (
( c ( le
`  O ) b  /\  b ( le
`  O ) a )  ->  c ( le `  O ) a ) )
2422, 23sylan2b 462 . . 3  |-  ( ( O  e.  Poset  /\  (
a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
) )  ->  (
( c ( le
`  O ) b  /\  b ( le
`  O ) a )  ->  c ( le `  O ) a ) )
25 vex 2951 . . . . 5  |-  c  e. 
_V
2615, 25brcnv 5047 . . . 4  |-  ( b `' ( le `  O ) c  <->  c ( le `  O ) b )
2716, 26anbi12ci 680 . . 3  |-  ( ( a `' ( le
`  O ) b  /\  b `' ( le `  O ) c )  <->  ( c
( le `  O
) b  /\  b
( le `  O
) a ) )
2812, 25brcnv 5047 . . 3  |-  ( a `' ( le `  O ) c  <->  c ( le `  O ) a )
2924, 27, 283imtr4g 262 . 2  |-  ( ( O  e.  Poset  /\  (
a  e.  ( Base `  O )  /\  b  e.  ( Base `  O
)  /\  c  e.  ( Base `  O )
) )  ->  (
( a `' ( le `  O ) b  /\  b `' ( le `  O
) c )  -> 
a `' ( le
`  O ) c ) )
304, 7, 10, 14, 21, 29isposd 14404 1  |-  ( O  e.  Poset  ->  D  e.  Poset
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   _Vcvv 2948   class class class wbr 4204   `'ccnv 4869   ` cfv 5446   Basecbs 13461   lecple 13528   Posetcpo 14389  ODualcodu 14547
This theorem is referenced by:  oduposb  14555  posglbd  14568
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ple 13541  df-poset 14395  df-odu 14548
  Copyright terms: Public domain W3C validator