MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oduval Structured version   Unicode version

Theorem oduval 14557
Description: Value of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Hypotheses
Ref Expression
oduval.d  |-  D  =  (ODual `  O )
oduval.l  |-  .<_  =  ( le `  O )
Assertion
Ref Expression
oduval  |-  D  =  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >. )

Proof of Theorem oduval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 id 20 . . . . 5  |-  ( a  =  O  ->  a  =  O )
2 fveq2 5728 . . . . . . 7  |-  ( a  =  O  ->  ( le `  a )  =  ( le `  O
) )
32cnveqd 5048 . . . . . 6  |-  ( a  =  O  ->  `' ( le `  a )  =  `' ( le
`  O ) )
43opeq2d 3991 . . . . 5  |-  ( a  =  O  ->  <. ( le `  ndx ) ,  `' ( le `  a ) >.  =  <. ( le `  ndx ) ,  `' ( le `  O ) >. )
51, 4oveq12d 6099 . . . 4  |-  ( a  =  O  ->  (
a sSet  <. ( le `  ndx ) ,  `' ( le `  a )
>. )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
6 df-odu 14556 . . . 4  |- ODual  =  ( a  e.  _V  |->  ( a sSet  <. ( le `  ndx ) ,  `' ( le `  a )
>. ) )
7 ovex 6106 . . . 4  |-  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O ) >.
)  e.  _V
85, 6, 7fvmpt 5806 . . 3  |-  ( O  e.  _V  ->  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
9 fvprc 5722 . . . 4  |-  ( -.  O  e.  _V  ->  (ODual `  O )  =  (/) )
10 reldmsets 13491 . . . . 5  |-  Rel  dom sSet
1110ovprc1 6109 . . . 4  |-  ( -.  O  e.  _V  ->  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. )  =  (/) )
129, 11eqtr4d 2471 . . 3  |-  ( -.  O  e.  _V  ->  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. ) )
138, 12pm2.61i 158 . 2  |-  (ODual `  O )  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O )
>. )
14 oduval.d . 2  |-  D  =  (ODual `  O )
15 oduval.l . . . . 5  |-  .<_  =  ( le `  O )
1615cnveqi 5047 . . . 4  |-  `'  .<_  =  `' ( le `  O )
1716opeq2i 3988 . . 3  |-  <. ( le `  ndx ) ,  `'  .<_  >.  =  <. ( le `  ndx ) ,  `' ( le `  O ) >.
1817oveq2i 6092 . 2  |-  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >.
)  =  ( O sSet  <. ( le `  ndx ) ,  `' ( le `  O ) >.
)
1913, 14, 183eqtr4i 2466 1  |-  D  =  ( O sSet  <. ( le `  ndx ) ,  `'  .<_  >. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1652    e. wcel 1725   _Vcvv 2956   (/)c0 3628   <.cop 3817   `'ccnv 4877   ` cfv 5454  (class class class)co 6081   ndxcnx 13466   sSet csts 13467   lecple 13536  ODualcodu 14555
This theorem is referenced by:  oduleval  14558  odubas  14560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-sets 13475  df-odu 14556
  Copyright terms: Public domain W3C validator