MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Unicode version

Theorem oe0 6521
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )

Proof of Theorem oe0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  (
(/)  ^o  (/) ) )
2 oe0m0 6519 . . . . 5  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2331 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  1o )
43adantl 452 . . 3  |-  ( ( A  e.  On  /\  A  =  (/) )  -> 
( A  ^o  (/) )  =  1o )
5 0elon 4445 . . . . . 6  |-  (/)  e.  On
6 oevn0 6514 . . . . . 6  |-  ( ( ( A  e.  On  /\  (/)  e.  On )  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
75, 6mpanl2 662 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
8 1on 6486 . . . . . . 7  |-  1o  e.  On
98elexi 2797 . . . . . 6  |-  1o  e.  _V
109rdg0 6434 . . . . 5  |-  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  (/) )  =  1o
117, 10syl6eq 2331 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  1o )
1211adantll 694 . . 3  |-  ( ( ( A  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  (/) )  =  1o )
134, 12oe0lem 6512 . 2  |-  ( ( A  e.  On  /\  A  e.  On )  ->  ( A  ^o  (/) )  =  1o )
1413anidms 626 1  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455    e. cmpt 4077   Oncon0 4392   ` cfv 5255  (class class class)co 5858   reccrdg 6422   1oc1o 6472    .o comu 6477    ^o coe 6478
This theorem is referenced by:  oecl  6536  oe1  6542  oe1m  6543  oen0  6584  oewordri  6590  oeoalem  6594  oeoelem  6596  oeoe  6597  oeeulem  6599  nnecl  6611  oaabs2  6643  cantnff  7375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-1o 6479  df-oexp 6485
  Copyright terms: Public domain W3C validator