MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oe0 Unicode version

Theorem oe0 6537
Description: Ordinal exponentiation with zero exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oe0  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )

Proof of Theorem oe0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  (
(/)  ^o  (/) ) )
2 oe0m0 6535 . . . . 5  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2344 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  (/) )  =  1o )
43adantl 452 . . 3  |-  ( ( A  e.  On  /\  A  =  (/) )  -> 
( A  ^o  (/) )  =  1o )
5 0elon 4461 . . . . . 6  |-  (/)  e.  On
6 oevn0 6530 . . . . . 6  |-  ( ( ( A  e.  On  /\  (/)  e.  On )  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
75, 6mpanl2 662 . . . . 5  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 (/) ) )
8 1on 6502 . . . . . . 7  |-  1o  e.  On
98elexi 2810 . . . . . 6  |-  1o  e.  _V
109rdg0 6450 . . . . 5  |-  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  (/) )  =  1o
117, 10syl6eq 2344 . . . 4  |-  ( ( A  e.  On  /\  (/) 
e.  A )  -> 
( A  ^o  (/) )  =  1o )
1211adantll 694 . . 3  |-  ( ( ( A  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  (/) )  =  1o )
134, 12oe0lem 6528 . 2  |-  ( ( A  e.  On  /\  A  e.  On )  ->  ( A  ^o  (/) )  =  1o )
1413anidms 626 1  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468    e. cmpt 4093   Oncon0 4408   ` cfv 5271  (class class class)co 5874   reccrdg 6438   1oc1o 6488    .o comu 6493    ^o coe 6494
This theorem is referenced by:  oecl  6552  oe1  6558  oe1m  6559  oen0  6600  oewordri  6606  oeoalem  6610  oeoelem  6612  oeoe  6613  oeeulem  6615  nnecl  6627  oaabs2  6659  cantnff  7391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-oexp 6501
  Copyright terms: Public domain W3C validator