MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oelimcl Unicode version

Theorem oelimcl 6614
Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
oelimcl  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  ^o  B ) )

Proof of Theorem oelimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3311 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  A  e.  On )
2 limelon 4471 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
3 oecl 6552 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
41, 2, 3syl2an 463 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  e.  On )
5 eloni 4418 . . 3  |-  ( ( A  ^o  B )  e.  On  ->  Ord  ( A  ^o  B ) )
64, 5syl 15 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  ^o  B ) )
71adantr 451 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  A  e.  On )
82adantl 452 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  B  e.  On )
9 dif20el 6520 . . . 4  |-  ( A  e.  ( On  \  2o )  ->  (/)  e.  A
)
109adantr 451 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  (/)  e.  A )
11 oen0 6600 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
127, 8, 10, 11syl21anc 1181 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  (/)  e.  ( A  ^o  B ) )
13 oelim2 6609 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) )
141, 13sylan 457 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  ^o  B )  =  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) )
1514eleq2d 2363 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  ( A  ^o  B
)  <->  x  e.  U_ y  e.  ( B  \  1o ) ( A  ^o  y ) ) )
16 eliun 3925 . . . . 5  |-  ( x  e.  U_ y  e.  ( B  \  1o ) ( A  ^o  y )  <->  E. y  e.  ( B  \  1o ) x  e.  ( A  ^o  y ) )
17 eldifi 3311 . . . . . . 7  |-  ( y  e.  ( B  \  1o )  ->  y  e.  B )
187adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  A  e.  On )
198adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  B  e.  On )
20 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  y  e.  B
)
21 onelon 4433 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  B )  ->  y  e.  On )
2219, 20, 21syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  y  e.  On )
23 oecl 6552 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
2418, 22, 23syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  y )  e.  On )
25 eloni 4418 . . . . . . . . . . 11  |-  ( ( A  ^o  y )  e.  On  ->  Ord  ( A  ^o  y
) )
2624, 25syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  Ord  ( A  ^o  y ) )
27 simprr 733 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  x  e.  ( A  ^o  y ) )
28 ordsucss 4625 . . . . . . . . . 10  |-  ( Ord  ( A  ^o  y
)  ->  ( x  e.  ( A  ^o  y
)  ->  suc  x  C_  ( A  ^o  y
) ) )
2926, 27, 28sylc 56 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  C_  ( A  ^o  y ) )
30 simpll 730 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  A  e.  ( On  \  2o ) )
31 oeordi 6601 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  A  e.  ( On  \  2o ) )  -> 
( y  e.  B  ->  ( A  ^o  y
)  e.  ( A  ^o  B ) ) )
3219, 30, 31syl2anc 642 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( y  e.  B  ->  ( A  ^o  y )  e.  ( A  ^o  B ) ) )
3320, 32mpd 14 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  y )  e.  ( A  ^o  B ) )
34 onelon 4433 . . . . . . . . . . . 12  |-  ( ( ( A  ^o  y
)  e.  On  /\  x  e.  ( A  ^o  y ) )  ->  x  e.  On )
3524, 27, 34syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  x  e.  On )
36 suceloni 4620 . . . . . . . . . . 11  |-  ( x  e.  On  ->  suc  x  e.  On )
3735, 36syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  e.  On )
384adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( A  ^o  B )  e.  On )
39 ontr2 4455 . . . . . . . . . 10  |-  ( ( suc  x  e.  On  /\  ( A  ^o  B
)  e.  On )  ->  ( ( suc  x  C_  ( A  ^o  y )  /\  ( A  ^o  y )  e.  ( A  ^o  B
) )  ->  suc  x  e.  ( A  ^o  B ) ) )
4037, 38, 39syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  ( ( suc  x  C_  ( A  ^o  y )  /\  ( A  ^o  y )  e.  ( A  ^o  B
) )  ->  suc  x  e.  ( A  ^o  B ) ) )
4129, 33, 40mp2and 660 . . . . . . . 8  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  (
y  e.  B  /\  x  e.  ( A  ^o  y ) ) )  ->  suc  x  e.  ( A  ^o  B ) )
4241expr 598 . . . . . . 7  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  y  e.  B )  ->  (
x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4317, 42sylan2 460 . . . . . 6  |-  ( ( ( A  e.  ( On  \  2o )  /\  ( B  e.  C  /\  Lim  B
) )  /\  y  e.  ( B  \  1o ) )  ->  (
x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4443rexlimdva 2680 . . . . 5  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( E. y  e.  ( B  \  1o ) x  e.  ( A  ^o  y )  ->  suc  x  e.  ( A  ^o  B ) ) )
4516, 44syl5bi 208 . . . 4  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e. 
U_ y  e.  ( B  \  1o ) ( A  ^o  y
)  ->  suc  x  e.  ( A  ^o  B
) ) )
4615, 45sylbid 206 . . 3  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( x  e.  ( A  ^o  B
)  ->  suc  x  e.  ( A  ^o  B
) ) )
4746ralrimiv 2638 . 2  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  A. x  e.  ( A  ^o  B ) suc  x  e.  ( A  ^o  B ) )
48 dflim4 4655 . 2  |-  ( Lim  ( A  ^o  B
)  <->  ( Ord  ( A  ^o  B )  /\  (/) 
e.  ( A  ^o  B )  /\  A. x  e.  ( A  ^o  B ) suc  x  e.  ( A  ^o  B
) ) )
496, 12, 47, 48syl3anbrc 1136 1  |-  ( ( A  e.  ( On 
\  2o )  /\  ( B  e.  C  /\  Lim  B ) )  ->  Lim  ( A  ^o  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    \ cdif 3162    C_ wss 3165   (/)c0 3468   U_ciun 3921   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410  (class class class)co 5874   1oc1o 6488   2oc2o 6489    ^o coe 6494
This theorem is referenced by:  oaabs2  6659  omabs  6661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-oexp 6501
  Copyright terms: Public domain W3C validator