MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapval Unicode version

Theorem oemapval 7385
Description: Value of the relation  T. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
oemapval.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
oemapval.3  |-  ( ph  ->  F  e.  S )
oemapval.4  |-  ( ph  ->  G  e.  S )
Assertion
Ref Expression
oemapval  |-  ( ph  ->  ( F T G  <->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) ) )
Distinct variable groups:    x, w, y, z, B    w, A, x, y, z    w, F, x, y, z    x, S, y, z    w, G, x, y, z    ph, x, y, z
Allowed substitution hints:    ph( w)    S( w)    T( x, y, z, w)

Proof of Theorem oemapval
StepHypRef Expression
1 oemapval.3 . 2  |-  ( ph  ->  F  e.  S )
2 oemapval.4 . 2  |-  ( ph  ->  G  e.  S )
3 fveq1 5524 . . . . . 6  |-  ( x  =  F  ->  (
x `  z )  =  ( F `  z ) )
4 fveq1 5524 . . . . . 6  |-  ( y  =  G  ->  (
y `  z )  =  ( G `  z ) )
5 eleq12 2345 . . . . . 6  |-  ( ( ( x `  z
)  =  ( F `
 z )  /\  ( y `  z
)  =  ( G `
 z ) )  ->  ( ( x `
 z )  e.  ( y `  z
)  <->  ( F `  z )  e.  ( G `  z ) ) )
63, 4, 5syl2an 463 . . . . 5  |-  ( ( x  =  F  /\  y  =  G )  ->  ( ( x `  z )  e.  ( y `  z )  <-> 
( F `  z
)  e.  ( G `
 z ) ) )
7 fveq1 5524 . . . . . . . 8  |-  ( x  =  F  ->  (
x `  w )  =  ( F `  w ) )
8 fveq1 5524 . . . . . . . 8  |-  ( y  =  G  ->  (
y `  w )  =  ( G `  w ) )
97, 8eqeqan12d 2298 . . . . . . 7  |-  ( ( x  =  F  /\  y  =  G )  ->  ( ( x `  w )  =  ( y `  w )  <-> 
( F `  w
)  =  ( G `
 w ) ) )
109imbi2d 307 . . . . . 6  |-  ( ( x  =  F  /\  y  =  G )  ->  ( ( z  e.  w  ->  ( x `  w )  =  ( y `  w ) )  <->  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) )
1110ralbidv 2563 . . . . 5  |-  ( ( x  =  F  /\  y  =  G )  ->  ( A. w  e.  B  ( z  e.  w  ->  ( x `  w )  =  ( y `  w ) )  <->  A. w  e.  B  ( z  e.  w  ->  ( F `  w
)  =  ( G `
 w ) ) ) )
126, 11anbi12d 691 . . . 4  |-  ( ( x  =  F  /\  y  =  G )  ->  ( ( ( x `
 z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) )  <->  ( ( F `  z )  e.  ( G `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( F `
 w )  =  ( G `  w
) ) ) ) )
1312rexbidv 2564 . . 3  |-  ( ( x  =  F  /\  y  =  G )  ->  ( E. z  e.  B  ( ( x `
 z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) )  <->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( F `
 w )  =  ( G `  w
) ) ) ) )
14 oemapval.t . . 3  |-  T  =  { <. x ,  y
>.  |  E. z  e.  B  ( (
x `  z )  e.  ( y `  z
)  /\  A. w  e.  B  ( z  e.  w  ->  ( x `
 w )  =  ( y `  w
) ) ) }
1513, 14brabga 4279 . 2  |-  ( ( F  e.  S  /\  G  e.  S )  ->  ( F T G  <->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) ) )
161, 2, 15syl2anc 642 1  |-  ( ph  ->  ( F T G  <->  E. z  e.  B  ( ( F `  z )  e.  ( G `  z )  /\  A. w  e.  B  ( z  e.  w  ->  ( F `  w )  =  ( G `  w ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   class class class wbr 4023   {copab 4076   Oncon0 4392   dom cdm 4689   ` cfv 5255  (class class class)co 5858   CNF ccnf 7362
This theorem is referenced by:  oemapvali  7386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator