MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoalem Unicode version

Theorem oeoalem 6610
Description: Lemma for oeoa 6611. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoalem.1  |-  A  e.  On
oeoalem.2  |-  (/)  e.  A
oeoalem.3  |-  B  e.  On
Assertion
Ref Expression
oeoalem  |-  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )

Proof of Theorem oeoalem
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5882 . . . 4  |-  ( x  =  (/)  ->  ( B  +o  x )  =  ( B  +o  (/) ) )
21oveq2d 5890 . . 3  |-  ( x  =  (/)  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  (/) ) ) )
3 oveq2 5882 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  x )  =  ( A  ^o  (/) ) )
43oveq2d 5890 . . 3  |-  ( x  =  (/)  ->  ( ( A  ^o  B )  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) ) )
52, 4eqeq12d 2310 . 2  |-  ( x  =  (/)  ->  ( ( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  (/) ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) ) ) )
6 oveq2 5882 . . . 4  |-  ( x  =  y  ->  ( B  +o  x )  =  ( B  +o  y
) )
76oveq2d 5890 . . 3  |-  ( x  =  y  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  y ) ) )
8 oveq2 5882 . . . 4  |-  ( x  =  y  ->  ( A  ^o  x )  =  ( A  ^o  y
) )
98oveq2d 5890 . . 3  |-  ( x  =  y  ->  (
( A  ^o  B
)  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )
107, 9eqeq12d 2310 . 2  |-  ( x  =  y  ->  (
( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  y
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  y ) ) ) )
11 oveq2 5882 . . . 4  |-  ( x  =  suc  y  -> 
( B  +o  x
)  =  ( B  +o  suc  y ) )
1211oveq2d 5890 . . 3  |-  ( x  =  suc  y  -> 
( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  suc  y
) ) )
13 oveq2 5882 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  x
)  =  ( A  ^o  suc  y ) )
1413oveq2d 5890 . . 3  |-  ( x  =  suc  y  -> 
( ( A  ^o  B )  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
1512, 14eqeq12d 2310 . 2  |-  ( x  =  suc  y  -> 
( ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) )  <-> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) ) )
16 oveq2 5882 . . . 4  |-  ( x  =  C  ->  ( B  +o  x )  =  ( B  +o  C
) )
1716oveq2d 5890 . . 3  |-  ( x  =  C  ->  ( A  ^o  ( B  +o  x ) )  =  ( A  ^o  ( B  +o  C ) ) )
18 oveq2 5882 . . . 4  |-  ( x  =  C  ->  ( A  ^o  x )  =  ( A  ^o  C
) )
1918oveq2d 5890 . . 3  |-  ( x  =  C  ->  (
( A  ^o  B
)  .o  ( A  ^o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C
) ) )
2017, 19eqeq12d 2310 . 2  |-  ( x  =  C  ->  (
( A  ^o  ( B  +o  x ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  <->  ( A  ^o  ( B  +o  C
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  C ) ) ) )
21 oeoalem.1 . . . . 5  |-  A  e.  On
22 oeoalem.3 . . . . 5  |-  B  e.  On
23 oecl 6552 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
2421, 22, 23mp2an 653 . . . 4  |-  ( A  ^o  B )  e.  On
25 om1 6556 . . . 4  |-  ( ( A  ^o  B )  e.  On  ->  (
( A  ^o  B
)  .o  1o )  =  ( A  ^o  B ) )
2624, 25ax-mp 8 . . 3  |-  ( ( A  ^o  B )  .o  1o )  =  ( A  ^o  B
)
27 oe0 6537 . . . . 5  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
2821, 27ax-mp 8 . . . 4  |-  ( A  ^o  (/) )  =  1o
2928oveq2i 5885 . . 3  |-  ( ( A  ^o  B )  .o  ( A  ^o  (/) ) )  =  ( ( A  ^o  B
)  .o  1o )
30 oa0 6531 . . . . 5  |-  ( B  e.  On  ->  ( B  +o  (/) )  =  B )
3122, 30ax-mp 8 . . . 4  |-  ( B  +o  (/) )  =  B
3231oveq2i 5885 . . 3  |-  ( A  ^o  ( B  +o  (/) ) )  =  ( A  ^o  B )
3326, 29, 323eqtr4ri 2327 . 2  |-  ( A  ^o  ( B  +o  (/) ) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  (/) ) )
34 oasuc 6539 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  suc  y )  =  suc  ( B  +o  y
) )
3534oveq2d 5890 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( A  ^o  suc  ( B  +o  y ) ) )
36 oacl 6550 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  +o  y
)  e.  On )
37 oesuc 6542 . . . . . . . 8  |-  ( ( A  e.  On  /\  ( B  +o  y
)  e.  On )  ->  ( A  ^o  suc  ( B  +o  y
) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
3821, 36, 37sylancr 644 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  ( B  +o  y
) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
3935, 38eqtrd 2328 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  ( B  +o  y ) )  .o  A ) )
4022, 39mpan 651 . . . . 5  |-  ( y  e.  On  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  ( B  +o  y
) )  .o  A
) )
41 oveq1 5881 . . . . 5  |-  ( ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) )  ->  (
( A  ^o  ( B  +o  y ) )  .o  A )  =  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
) )
4240, 41sylan9eq 2348 . . . 4  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( ( A  ^o  B
)  .o  ( A  ^o  y ) )  .o  A ) )
43 oecl 6552 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  y
)  e.  On )
44 omass 6594 . . . . . . . . 9  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( A  ^o  y
)  e.  On  /\  A  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
4524, 21, 44mp3an13 1268 . . . . . . . 8  |-  ( ( A  ^o  y )  e.  On  ->  (
( ( A  ^o  B )  .o  ( A  ^o  y ) )  .o  A )  =  ( ( A  ^o  B )  .o  (
( A  ^o  y
)  .o  A ) ) )
4643, 45syl 15 . . . . . . 7  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
47 oesuc 6542 . . . . . . . 8  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  ^o  suc  y )  =  ( ( A  ^o  y
)  .o  A ) )
4847oveq2d 5890 . . . . . . 7  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( ( A  ^o  y )  .o  A ) ) )
4946, 48eqtr4d 2331 . . . . . 6  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5021, 49mpan 651 . . . . 5  |-  ( y  e.  On  ->  (
( ( A  ^o  B )  .o  ( A  ^o  y ) )  .o  A )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5150adantr 451 . . . 4  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( ( ( A  ^o  B )  .o  ( A  ^o  y
) )  .o  A
)  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5242, 51eqtrd 2328 . . 3  |-  ( ( y  e.  On  /\  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )  -> 
( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) )
5352ex 423 . 2  |-  ( y  e.  On  ->  (
( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y
) )  ->  ( A  ^o  ( B  +o  suc  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  suc  y ) ) ) )
54 vex 2804 . . . . . . . 8  |-  x  e. 
_V
55 oalim 6547 . . . . . . . . 9  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( B  +o  x )  =  U_ y  e.  x  ( B  +o  y ) )
5622, 55mpan 651 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( B  +o  x )  = 
U_ y  e.  x  ( B  +o  y
) )
5754, 56mpan 651 . . . . . . 7  |-  ( Lim  x  ->  ( B  +o  x )  =  U_ y  e.  x  ( B  +o  y ) )
5857oveq2d 5890 . . . . . 6  |-  ( Lim  x  ->  ( A  ^o  ( B  +o  x
) )  =  ( A  ^o  U_ y  e.  x  ( B  +o  y ) ) )
5954a1i 10 . . . . . . 7  |-  ( Lim  x  ->  x  e.  _V )
60 limord 4467 . . . . . . . . . 10  |-  ( Lim  x  ->  Ord  x )
61 ordelon 4432 . . . . . . . . . 10  |-  ( ( Ord  x  /\  y  e.  x )  ->  y  e.  On )
6260, 61sylan 457 . . . . . . . . 9  |-  ( ( Lim  x  /\  y  e.  x )  ->  y  e.  On )
6322, 62, 36sylancr 644 . . . . . . . 8  |-  ( ( Lim  x  /\  y  e.  x )  ->  ( B  +o  y )  e.  On )
6463ralrimiva 2639 . . . . . . 7  |-  ( Lim  x  ->  A. y  e.  x  ( B  +o  y )  e.  On )
65 0ellim 4470 . . . . . . . 8  |-  ( Lim  x  ->  (/)  e.  x
)
66 ne0i 3474 . . . . . . . 8  |-  ( (/)  e.  x  ->  x  =/=  (/) )
6765, 66syl 15 . . . . . . 7  |-  ( Lim  x  ->  x  =/=  (/) )
68 vex 2804 . . . . . . . . 9  |-  w  e. 
_V
69 oeoalem.2 . . . . . . . . . . 11  |-  (/)  e.  A
70 oelim 6549 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  /\  (/)  e.  A )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7169, 70mpan2 652 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7221, 71mpan 651 . . . . . . . . 9  |-  ( ( w  e.  _V  /\  Lim  w )  ->  ( A  ^o  w )  = 
U_ z  e.  w  ( A  ^o  z
) )
7368, 72mpan 651 . . . . . . . 8  |-  ( Lim  w  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
74 oewordi 6605 . . . . . . . . . . 11  |-  ( ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  C_  w  ->  ( A  ^o  z )  C_  ( A  ^o  w ) ) )
7569, 74mpan2 652 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  ->  (
z  C_  w  ->  ( A  ^o  z ) 
C_  ( A  ^o  w ) ) )
7621, 75mp3an3 1266 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( A  ^o  z
)  C_  ( A  ^o  w ) ) )
77763impia 1148 . . . . . . . 8  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  ( A  ^o  z )  C_  ( A  ^o  w
) )
7873, 77onoviun 6376 . . . . . . 7  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( B  +o  y )  e.  On  /\  x  =/=  (/) )  ->  ( A  ^o  U_ y  e.  x  ( B  +o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
7959, 64, 67, 78syl3anc 1182 . . . . . 6  |-  ( Lim  x  ->  ( A  ^o  U_ y  e.  x  ( B  +o  y
) )  =  U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
8058, 79eqtrd 2328 . . . . 5  |-  ( Lim  x  ->  ( A  ^o  ( B  +o  x
) )  =  U_ y  e.  x  ( A  ^o  ( B  +o  y ) ) )
81 iuneq2 3937 . . . . 5  |-  ( A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) )  ->  U_ y  e.  x  ( A  ^o  ( B  +o  y ) )  =  U_ y  e.  x  ( ( A  ^o  B )  .o  ( A  ^o  y
) ) )
8280, 81sylan9eq 2348 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( A  ^o  ( B  +o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
83 oelim 6549 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  A )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8469, 83mpan2 652 . . . . . . . . 9  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8521, 84mpan 651 . . . . . . . 8  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( A  ^o  x )  = 
U_ y  e.  x  ( A  ^o  y
) )
8654, 85mpan 651 . . . . . . 7  |-  ( Lim  x  ->  ( A  ^o  x )  =  U_ y  e.  x  ( A  ^o  y ) )
8786oveq2d 5890 . . . . . 6  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  ( ( A  ^o  B
)  .o  U_ y  e.  x  ( A  ^o  y ) ) )
8821, 62, 43sylancr 644 . . . . . . . 8  |-  ( ( Lim  x  /\  y  e.  x )  ->  ( A  ^o  y )  e.  On )
8988ralrimiva 2639 . . . . . . 7  |-  ( Lim  x  ->  A. y  e.  x  ( A  ^o  y )  e.  On )
90 omlim 6548 . . . . . . . . . 10  |-  ( ( ( A  ^o  B
)  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( ( A  ^o  B )  .o  w )  =  U_ z  e.  w  (
( A  ^o  B
)  .o  z ) )
9124, 90mpan 651 . . . . . . . . 9  |-  ( ( w  e.  _V  /\  Lim  w )  ->  (
( A  ^o  B
)  .o  w )  =  U_ z  e.  w  ( ( A  ^o  B )  .o  z ) )
9268, 91mpan 651 . . . . . . . 8  |-  ( Lim  w  ->  ( ( A  ^o  B )  .o  w )  =  U_ z  e.  w  (
( A  ^o  B
)  .o  z ) )
93 omwordi 6585 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On  /\  ( A  ^o  B )  e.  On )  ->  (
z  C_  w  ->  ( ( A  ^o  B
)  .o  z ) 
C_  ( ( A  ^o  B )  .o  w ) ) )
9424, 93mp3an3 1266 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( ( A  ^o  B )  .o  z
)  C_  ( ( A  ^o  B )  .o  w ) ) )
95943impia 1148 . . . . . . . 8  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  (
( A  ^o  B
)  .o  z ) 
C_  ( ( A  ^o  B )  .o  w ) )
9692, 95onoviun 6376 . . . . . . 7  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( A  ^o  y )  e.  On  /\  x  =/=  (/) )  ->  (
( A  ^o  B
)  .o  U_ y  e.  x  ( A  ^o  y ) )  = 
U_ y  e.  x  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )
9759, 89, 67, 96syl3anc 1182 . . . . . 6  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o 
U_ y  e.  x  ( A  ^o  y
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
9887, 97eqtrd 2328 . . . . 5  |-  ( Lim  x  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
9998adantr 451 . . . 4  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( ( A  ^o  B )  .o  ( A  ^o  x
) )  =  U_ y  e.  x  (
( A  ^o  B
)  .o  ( A  ^o  y ) ) )
10082, 99eqtr4d 2331 . . 3  |-  ( ( Lim  x  /\  A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) ) )  ->  ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) ) )
101100ex 423 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( A  ^o  ( B  +o  y ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  y ) )  ->  ( A  ^o  ( B  +o  x
) )  =  ( ( A  ^o  B
)  .o  ( A  ^o  x ) ) ) )
1025, 10, 15, 20, 33, 53, 101tfinds 4666 1  |-  ( C  e.  On  ->  ( A  ^o  ( B  +o  C ) )  =  ( ( A  ^o  B )  .o  ( A  ^o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   _Vcvv 2801    C_ wss 3165   (/)c0 3468   U_ciun 3921   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410  (class class class)co 5874   1oc1o 6488    +o coa 6492    .o comu 6493    ^o coe 6494
This theorem is referenced by:  oeoa  6611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-oexp 6501
  Copyright terms: Public domain W3C validator