MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeoelem Unicode version

Theorem oeoelem 6596
Description: Lemma for oeoe 6597. (Contributed by Eric Schmidt, 26-May-2009.)
Hypotheses
Ref Expression
oeoelem.1  |-  A  e.  On
oeoelem.2  |-  (/)  e.  A
Assertion
Ref Expression
oeoelem  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )

Proof of Theorem oeoelem
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . . 4  |-  ( x  =  (/)  ->  ( ( A  ^o  B )  ^o  x )  =  ( ( A  ^o  B )  ^o  (/) ) )
2 oveq2 5866 . . . . 5  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
32oveq2d 5874 . . . 4  |-  ( x  =  (/)  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  (/) ) ) )
41, 3eqeq12d 2297 . . 3  |-  ( x  =  (/)  ->  ( ( ( A  ^o  B
)  ^o  x )  =  ( A  ^o  ( B  .o  x
) )  <->  ( ( A  ^o  B )  ^o  (/) )  =  ( A  ^o  ( B  .o  (/) ) ) ) )
5 oveq2 5866 . . . 4  |-  ( x  =  y  ->  (
( A  ^o  B
)  ^o  x )  =  ( ( A  ^o  B )  ^o  y ) )
6 oveq2 5866 . . . . 5  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
76oveq2d 5874 . . . 4  |-  ( x  =  y  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  y ) ) )
85, 7eqeq12d 2297 . . 3  |-  ( x  =  y  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  ( ( A  ^o  B )  ^o  y )  =  ( A  ^o  ( B  .o  y ) ) ) )
9 oveq2 5866 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  ^o  B )  ^o  x
)  =  ( ( A  ^o  B )  ^o  suc  y ) )
10 oveq2 5866 . . . . 5  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1110oveq2d 5874 . . . 4  |-  ( x  =  suc  y  -> 
( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  suc  y
) ) )
129, 11eqeq12d 2297 . . 3  |-  ( x  =  suc  y  -> 
( ( ( A  ^o  B )  ^o  x )  =  ( A  ^o  ( B  .o  x ) )  <-> 
( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) )
13 oveq2 5866 . . . 4  |-  ( x  =  C  ->  (
( A  ^o  B
)  ^o  x )  =  ( ( A  ^o  B )  ^o  C ) )
14 oveq2 5866 . . . . 5  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
1514oveq2d 5874 . . . 4  |-  ( x  =  C  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  ( B  .o  C ) ) )
1613, 15eqeq12d 2297 . . 3  |-  ( x  =  C  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  ( ( A  ^o  B )  ^o  C )  =  ( A  ^o  ( B  .o  C ) ) ) )
17 oeoelem.1 . . . . . 6  |-  A  e.  On
18 oecl 6536 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  e.  On )
1917, 18mpan 651 . . . . 5  |-  ( B  e.  On  ->  ( A  ^o  B )  e.  On )
20 oe0 6521 . . . . 5  |-  ( ( A  ^o  B )  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  1o )
2119, 20syl 15 . . . 4  |-  ( B  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  1o )
22 om0 6516 . . . . . 6  |-  ( B  e.  On  ->  ( B  .o  (/) )  =  (/) )
2322oveq2d 5874 . . . . 5  |-  ( B  e.  On  ->  ( A  ^o  ( B  .o  (/) ) )  =  ( A  ^o  (/) ) )
24 oe0 6521 . . . . . 6  |-  ( A  e.  On  ->  ( A  ^o  (/) )  =  1o )
2517, 24ax-mp 8 . . . . 5  |-  ( A  ^o  (/) )  =  1o
2623, 25syl6eq 2331 . . . 4  |-  ( B  e.  On  ->  ( A  ^o  ( B  .o  (/) ) )  =  1o )
2721, 26eqtr4d 2318 . . 3  |-  ( B  e.  On  ->  (
( A  ^o  B
)  ^o  (/) )  =  ( A  ^o  ( B  .o  (/) ) ) )
28 oveq1 5865 . . . . 5  |-  ( ( ( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  (
( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B
) ) )
29 oesuc 6526 . . . . . . 7  |-  ( ( ( A  ^o  B
)  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( ( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) ) )
3019, 29sylan 457 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( ( ( A  ^o  B )  ^o  y
)  .o  ( A  ^o  B ) ) )
31 omsuc 6525 . . . . . . . 8  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
3231oveq2d 5874 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  .o  suc  y ) )  =  ( A  ^o  ( ( B  .o  y )  +o  B ) ) )
33 omcl 6535 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  y
)  e.  On )
34 oeoa 6595 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  ( B  .o  y
)  e.  On  /\  B  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3517, 34mp3an1 1264 . . . . . . . . 9  |-  ( ( ( B  .o  y
)  e.  On  /\  B  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3633, 35sylan 457 . . . . . . . 8  |-  ( ( ( B  e.  On  /\  y  e.  On )  /\  B  e.  On )  ->  ( A  ^o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3736anabss1 787 . . . . . . 7  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3832, 37eqtrd 2315 . . . . . 6  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( A  ^o  ( B  .o  suc  y ) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) )
3930, 38eqeq12d 2297 . . . . 5  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) )  <->  ( ( ( A  ^o  B )  ^o  y )  .o  ( A  ^o  B
) )  =  ( ( A  ^o  ( B  .o  y ) )  .o  ( A  ^o  B ) ) ) )
4028, 39syl5ibr 212 . . . 4  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( ( ( A  ^o  B )  ^o  y )  =  ( A  ^o  ( B  .o  y ) )  ->  ( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) )
4140expcom 424 . . 3  |-  ( y  e.  On  ->  ( B  e.  On  ->  ( ( ( A  ^o  B )  ^o  y
)  =  ( A  ^o  ( B  .o  y ) )  -> 
( ( A  ^o  B )  ^o  suc  y )  =  ( A  ^o  ( B  .o  suc  y ) ) ) ) )
42 iuneq2 3921 . . . . 5  |-  ( A. y  e.  x  (
( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  U_ y  e.  x  ( ( A  ^o  B )  ^o  y )  =  U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
43 vex 2791 . . . . . . 7  |-  x  e. 
_V
44 oeoelem.2 . . . . . . . . . . 11  |-  (/)  e.  A
45 oen0 6584 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  (/)  e.  ( A  ^o  B ) )
4644, 45mpan2 652 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On )  -> 
(/)  e.  ( A  ^o  B ) )
47 oelim 6533 . . . . . . . . . . 11  |-  ( ( ( ( A  ^o  B )  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  ( A  ^o  B ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
4818, 47sylanl1 631 . . . . . . . . . 10  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (
x  e.  _V  /\  Lim  x ) )  /\  (/) 
e.  ( A  ^o  B ) )  -> 
( ( A  ^o  B )  ^o  x
)  =  U_ y  e.  x  ( ( A  ^o  B )  ^o  y ) )
4946, 48sylan2 460 . . . . . . . . 9  |-  ( ( ( ( A  e.  On  /\  B  e.  On )  /\  (
x  e.  _V  /\  Lim  x ) )  /\  ( A  e.  On  /\  B  e.  On ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5049anabss1 787 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  ( x  e. 
_V  /\  Lim  x ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5117, 50mpanl1 661 . . . . . . 7  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( ( A  ^o  B )  ^o  x )  =  U_ y  e.  x  (
( A  ^o  B
)  ^o  y )
)
5243, 51mpanr1 664 . . . . . 6  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( A  ^o  B
)  ^o  x )  =  U_ y  e.  x  ( ( A  ^o  B )  ^o  y
) )
53 omlim 6532 . . . . . . . . 9  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( B  .o  x )  =  U_ y  e.  x  ( B  .o  y ) )
5443, 53mpanr1 664 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( B  .o  x )  = 
U_ y  e.  x  ( B  .o  y
) )
5554oveq2d 5874 . . . . . . 7  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  ( B  .o  x ) )  =  ( A  ^o  U_ y  e.  x  ( B  .o  y ) ) )
5643a1i 10 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  x  e.  _V )
57 limord 4451 . . . . . . . . . . . 12  |-  ( Lim  x  ->  Ord  x )
58 ordelon 4416 . . . . . . . . . . . 12  |-  ( ( Ord  x  /\  y  e.  x )  ->  y  e.  On )
5957, 58sylan 457 . . . . . . . . . . 11  |-  ( ( Lim  x  /\  y  e.  x )  ->  y  e.  On )
6059, 33sylan2 460 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  ( Lim  x  /\  y  e.  x ) )  -> 
( B  .o  y
)  e.  On )
6160anassrs 629 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  y  e.  x )  ->  ( B  .o  y
)  e.  On )
6261ralrimiva 2626 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  A. y  e.  x  ( B  .o  y )  e.  On )
63 0ellim 4454 . . . . . . . . . 10  |-  ( Lim  x  ->  (/)  e.  x
)
64 ne0i 3461 . . . . . . . . . 10  |-  ( (/)  e.  x  ->  x  =/=  (/) )
6563, 64syl 15 . . . . . . . . 9  |-  ( Lim  x  ->  x  =/=  (/) )
6665adantl 452 . . . . . . . 8  |-  ( ( B  e.  On  /\  Lim  x )  ->  x  =/=  (/) )
67 vex 2791 . . . . . . . . . 10  |-  w  e. 
_V
68 oelim 6533 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  /\  (/)  e.  A )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
6944, 68mpan2 652 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( w  e.  _V  /\ 
Lim  w ) )  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
7017, 69mpan 651 . . . . . . . . . 10  |-  ( ( w  e.  _V  /\  Lim  w )  ->  ( A  ^o  w )  = 
U_ z  e.  w  ( A  ^o  z
) )
7167, 70mpan 651 . . . . . . . . 9  |-  ( Lim  w  ->  ( A  ^o  w )  =  U_ z  e.  w  ( A  ^o  z ) )
72 oewordi 6589 . . . . . . . . . . . 12  |-  ( ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  C_  w  ->  ( A  ^o  z )  C_  ( A  ^o  w ) ) )
7344, 72mpan2 652 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  w  e.  On  /\  A  e.  On )  ->  (
z  C_  w  ->  ( A  ^o  z ) 
C_  ( A  ^o  w ) ) )
7417, 73mp3an3 1266 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  C_  w  ->  ( A  ^o  z
)  C_  ( A  ^o  w ) ) )
75743impia 1148 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On  /\  z  C_  w )  ->  ( A  ^o  z )  C_  ( A  ^o  w
) )
7671, 75onoviun 6360 . . . . . . . 8  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( B  .o  y )  e.  On  /\  x  =/=  (/) )  ->  ( A  ^o  U_ y  e.  x  ( B  .o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7756, 62, 66, 76syl3anc 1182 . . . . . . 7  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  U_ y  e.  x  ( B  .o  y ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7855, 77eqtrd 2315 . . . . . 6  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A  ^o  ( B  .o  x ) )  = 
U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) )
7952, 78eqeq12d 2297 . . . . 5  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) )  <->  U_ y  e.  x  ( ( A  ^o  B )  ^o  y )  =  U_ y  e.  x  ( A  ^o  ( B  .o  y ) ) ) )
8042, 79syl5ibr 212 . . . 4  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( A. y  e.  x  ( ( A  ^o  B )  ^o  y
)  =  ( A  ^o  ( B  .o  y ) )  -> 
( ( A  ^o  B )  ^o  x
)  =  ( A  ^o  ( B  .o  x ) ) ) )
8180expcom 424 . . 3  |-  ( Lim  x  ->  ( B  e.  On  ->  ( A. y  e.  x  (
( A  ^o  B
)  ^o  y )  =  ( A  ^o  ( B  .o  y
) )  ->  (
( A  ^o  B
)  ^o  x )  =  ( A  ^o  ( B  .o  x
) ) ) ) )
824, 8, 12, 16, 27, 41, 81tfinds3 4655 . 2  |-  ( C  e.  On  ->  ( B  e.  On  ->  ( ( A  ^o  B
)  ^o  C )  =  ( A  ^o  ( B  .o  C
) ) ) )
8382impcom 419 1  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( A  ^o  B )  ^o  C
)  =  ( A  ^o  ( B  .o  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788    C_ wss 3152   (/)c0 3455   U_ciun 3905   Ord word 4391   Oncon0 4392   Lim wlim 4393   suc csuc 4394  (class class class)co 5858   1oc1o 6472    +o coa 6476    .o comu 6477    ^o coe 6478
This theorem is referenced by:  oeoe  6597
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485
  Copyright terms: Public domain W3C validator