MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oev2 Structured version   Unicode version

Theorem oev2 6769
Description: Alternate value of ordinal exponentiation. Compare oev 6760. (Contributed by NM, 2-Jan-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
oev2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  (
( _V  \  |^| A )  u.  |^| B ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oev2
StepHypRef Expression
1 oveq12 6092 . . . . . 6  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  ^o  B )  =  ( (/)  ^o  (/) ) )
2 oe0m0 6766 . . . . . 6  |-  ( (/)  ^o  (/) )  =  1o
31, 2syl6eq 2486 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  ^o  B )  =  1o )
4 fveq2 5730 . . . . . . . 8  |-  ( B  =  (/)  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  (/) ) )
5 1on 6733 . . . . . . . . . 10  |-  1o  e.  On
65elexi 2967 . . . . . . . . 9  |-  1o  e.  _V
76rdg0 6681 . . . . . . . 8  |-  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  (/) )  =  1o
84, 7syl6eq 2486 . . . . . . 7  |-  ( B  =  (/)  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  =  1o )
9 inteq 4055 . . . . . . . 8  |-  ( B  =  (/)  ->  |^| B  =  |^| (/) )
10 int0 4066 . . . . . . . 8  |-  |^| (/)  =  _V
119, 10syl6eq 2486 . . . . . . 7  |-  ( B  =  (/)  ->  |^| B  =  _V )
128, 11ineq12d 3545 . . . . . 6  |-  ( B  =  (/)  ->  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  |^| B )  =  ( 1o  i^i  _V )
)
13 inv1 3656 . . . . . . 7  |-  ( 1o 
i^i  _V )  =  1o
1413a1i 11 . . . . . 6  |-  ( A  =  (/)  ->  ( 1o 
i^i  _V )  =  1o )
1512, 14sylan9eqr 2492 . . . . 5  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  (
( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  i^i  |^| B )  =  1o )
163, 15eqtr4d 2473 . . . 4  |-  ( ( A  =  (/)  /\  B  =  (/) )  ->  ( A  ^o  B )  =  ( ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )  i^i  |^| B ) )
17 oveq1 6090 . . . . . . 7  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
18 oe0m1 6767 . . . . . . . 8  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
1918biimpa 472 . . . . . . 7  |-  ( ( B  e.  On  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
2017, 19sylan9eqr 2492 . . . . . 6  |-  ( ( ( B  e.  On  /\  (/)  e.  B )  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  (/) )
2120an32s 781 . . . . 5  |-  ( ( ( B  e.  On  /\  A  =  (/) )  /\  (/) 
e.  B )  -> 
( A  ^o  B
)  =  (/) )
22 int0el 4083 . . . . . . . 8  |-  ( (/)  e.  B  ->  |^| B  =  (/) )
2322ineq2d 3544 . . . . . . 7  |-  ( (/)  e.  B  ->  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  |^| B )  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  i^i  (/) ) )
24 in0 3655 . . . . . . 7  |-  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  (/) )  =  (/)
2523, 24syl6eq 2486 . . . . . 6  |-  ( (/)  e.  B  ->  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  |^| B )  =  (/) )
2625adantl 454 . . . . 5  |-  ( ( ( B  e.  On  /\  A  =  (/) )  /\  (/) 
e.  B )  -> 
( ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )  i^i  |^| B )  =  (/) )
2721, 26eqtr4d 2473 . . . 4  |-  ( ( ( B  e.  On  /\  A  =  (/) )  /\  (/) 
e.  B )  -> 
( A  ^o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  |^| B ) )
2816, 27oe0lem 6759 . . 3  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  |^| B ) )
29 inteq 4055 . . . . . . . . . 10  |-  ( A  =  (/)  ->  |^| A  =  |^| (/) )
3029, 10syl6eq 2486 . . . . . . . . 9  |-  ( A  =  (/)  ->  |^| A  =  _V )
3130difeq2d 3467 . . . . . . . 8  |-  ( A  =  (/)  ->  ( _V 
\  |^| A )  =  ( _V  \  _V ) )
32 difid 3698 . . . . . . . 8  |-  ( _V 
\  _V )  =  (/)
3331, 32syl6eq 2486 . . . . . . 7  |-  ( A  =  (/)  ->  ( _V 
\  |^| A )  =  (/) )
3433uneq2d 3503 . . . . . 6  |-  ( A  =  (/)  ->  ( |^| B  u.  ( _V  \ 
|^| A ) )  =  ( |^| B  u.  (/) ) )
35 uncom 3493 . . . . . 6  |-  ( |^| B  u.  ( _V  \ 
|^| A ) )  =  ( ( _V 
\  |^| A )  u. 
|^| B )
36 un0 3654 . . . . . 6  |-  ( |^| B  u.  (/) )  = 
|^| B
3734, 35, 363eqtr3g 2493 . . . . 5  |-  ( A  =  (/)  ->  ( ( _V  \  |^| A
)  u.  |^| B
)  =  |^| B
)
3837adantl 454 . . . 4  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( ( _V  \  |^| A )  u.  |^| B )  =  |^| B )
3938ineq2d 3544 . . 3  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )  i^i  ( ( _V  \  |^| A )  u.  |^| B ) )  =  ( ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )  i^i  |^| B ) )
4028, 39eqtr4d 2473 . 2  |-  ( ( B  e.  On  /\  A  =  (/) )  -> 
( A  ^o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  (
( _V  \  |^| A )  u.  |^| B ) ) )
41 oevn0 6761 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
42 int0el 4083 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  |^| A  =  (/) )
4342difeq2d 3467 . . . . . . . . 9  |-  ( (/)  e.  A  ->  ( _V 
\  |^| A )  =  ( _V  \  (/) ) )
44 dif0 3700 . . . . . . . . 9  |-  ( _V 
\  (/) )  =  _V
4543, 44syl6eq 2486 . . . . . . . 8  |-  ( (/)  e.  A  ->  ( _V 
\  |^| A )  =  _V )
4645uneq2d 3503 . . . . . . 7  |-  ( (/)  e.  A  ->  ( |^| B  u.  ( _V  \ 
|^| A ) )  =  ( |^| B  u.  _V ) )
47 unv 3657 . . . . . . 7  |-  ( |^| B  u.  _V )  =  _V
4846, 35, 473eqtr3g 2493 . . . . . 6  |-  ( (/)  e.  A  ->  ( ( _V  \  |^| A
)  u.  |^| B
)  =  _V )
4948adantl 454 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( ( _V 
\  |^| A )  u. 
|^| B )  =  _V )
5049ineq2d 3544 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  i^i  ( ( _V  \  |^| A )  u.  |^| B ) )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  i^i  _V )
)
51 inv1 3656 . . . 4  |-  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  _V )  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)
5250, 51syl6req 2487 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )  =  ( ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  i^i  ( ( _V  \  |^| A )  u.  |^| B ) ) )
5341, 52eqtrd 2470 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  i^i  ( ( _V  \  |^| A )  u.  |^| B ) ) )
5440, 53oe0lem 6759 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  ^o  B
)  =  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B )  i^i  (
( _V  \  |^| A )  u.  |^| B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321   (/)c0 3630   |^|cint 4052    e. cmpt 4268   Oncon0 4583   ` cfv 5456  (class class class)co 6083   reccrdg 6669   1oc1o 6719    .o comu 6724    ^o coe 6725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-recs 6635  df-rdg 6670  df-1o 6726  df-oexp 6732
  Copyright terms: Public domain W3C validator