MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeq Unicode version

Theorem ofeq 6122
Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.)
Assertion
Ref Expression
ofeq  |-  ( R  =  S  ->  o F R  =  o F S )

Proof of Theorem ofeq
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . . . 5  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  R  =  S )
21oveqd 5917 . . . 4  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
( f `  x
) R ( g `
 x ) )  =  ( ( f `
 x ) S ( g `  x
) ) )
32mpteq2dv 4144 . . 3  |-  ( ( R  =  S  /\  f  e.  _V  /\  g  e.  _V )  ->  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x ) S ( g `  x ) ) ) )
43mpt2eq3dva 5954 . 2  |-  ( R  =  S  ->  (
f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  =  ( f  e. 
_V ,  g  e. 
_V  |->  ( x  e.  ( dom  f  i^i 
dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) ) )
5 df-of 6120 . 2  |-  o F R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
6 df-of 6120 . 2  |-  o F S  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) S ( g `
 x ) ) ) )
74, 5, 63eqtr4g 2373 1  |-  ( R  =  S  ->  o F R  =  o F S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1633    e. wcel 1701   _Vcvv 2822    i^i cin 3185    e. cmpt 4114   dom cdm 4726   ` cfv 5292  (class class class)co 5900    e. cmpt2 5902    o Fcof 6118
This theorem is referenced by:  psrval  16159  resspsradd  16209  resspsrvsca  16211  mendval  26639  mendplusgfval  26641  mendvscafval  26646  ldualset  29133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-iota 5256  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120
  Copyright terms: Public domain W3C validator