MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  offres Unicode version

Theorem offres 6179
Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
offres  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  o F R G )  |`  D )  =  ( ( F  |`  D )  o F R ( G  |`  D )
) )

Proof of Theorem offres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3466 . . . . . 6  |-  ( ( dom  F  i^i  dom  G )  i^i  D ) 
C_  D
21sseli 3252 . . . . 5  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  ->  x  e.  D )
3 fvres 5625 . . . . . 6  |-  ( x  e.  D  ->  (
( F  |`  D ) `
 x )  =  ( F `  x
) )
4 fvres 5625 . . . . . 6  |-  ( x  e.  D  ->  (
( G  |`  D ) `
 x )  =  ( G `  x
) )
53, 4oveq12d 5963 . . . . 5  |-  ( x  e.  D  ->  (
( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
62, 5syl 15 . . . 4  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  -> 
( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )  =  ( ( F `  x ) R ( G `  x ) ) )
76mpteq2ia 4183 . . 3  |-  ( x  e.  ( ( dom 
F  i^i  dom  G )  i^i  D )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
8 inindi 3462 . . . . 5  |-  ( D  i^i  ( dom  F  i^i  dom  G ) )  =  ( ( D  i^i  dom  F )  i^i  ( D  i^i  dom  G ) )
9 incom 3437 . . . . 5  |-  ( ( dom  F  i^i  dom  G )  i^i  D )  =  ( D  i^i  ( dom  F  i^i  dom  G ) )
10 dmres 5058 . . . . . 6  |-  dom  ( F  |`  D )  =  ( D  i^i  dom  F )
11 dmres 5058 . . . . . 6  |-  dom  ( G  |`  D )  =  ( D  i^i  dom  G )
1210, 11ineq12i 3444 . . . . 5  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( D  i^i  dom 
F )  i^i  ( D  i^i  dom  G )
)
138, 9, 123eqtr4ri 2389 . . . 4  |-  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  =  ( ( dom  F  i^i  dom  G )  i^i 
D )
14 eqid 2358 . . . 4  |-  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) )  =  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) )
1513, 14mpteq12i 4185 . . 3  |-  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( ( F  |`  D ) `
 x ) R ( ( G  |`  D ) `  x
) ) )
16 resmpt3 5083 . . 3  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( ( dom  F  i^i  dom  G )  i^i 
D )  |->  ( ( F `  x ) R ( G `  x ) ) )
177, 15, 163eqtr4ri 2389 . 2  |-  ( ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( ( F `  x ) R ( G `  x ) ) )  |`  D )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) )
18 offval3 6178 . . 3  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( F  o F R G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) ) )
1918reseq1d 5036 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  o F R G )  |`  D )  =  ( ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x ) R ( G `  x
) ) )  |`  D ) )
20 resexg 5076 . . 3  |-  ( F  e.  V  ->  ( F  |`  D )  e. 
_V )
21 resexg 5076 . . 3  |-  ( G  e.  W  ->  ( G  |`  D )  e. 
_V )
22 offval3 6178 . . 3  |-  ( ( ( F  |`  D )  e.  _V  /\  ( G  |`  D )  e. 
_V )  ->  (
( F  |`  D )  o F R ( G  |`  D )
)  =  ( x  e.  ( dom  ( F  |`  D )  i^i 
dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x
) R ( ( G  |`  D ) `  x ) ) ) )
2320, 21, 22syl2an 463 . 2  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  |`  D )  o F R ( G  |`  D ) )  =  ( x  e.  ( dom  ( F  |`  D )  i^i  dom  ( G  |`  D ) )  |->  ( ( ( F  |`  D ) `  x ) R ( ( G  |`  D ) `
 x ) ) ) )
2417, 19, 233eqtr4a 2416 1  |-  ( ( F  e.  V  /\  G  e.  W )  ->  ( ( F  o F R G )  |`  D )  =  ( ( F  |`  D )  o F R ( G  |`  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864    i^i cin 3227    e. cmpt 4158   dom cdm 4771    |` cres 4773   ` cfv 5337  (class class class)co 5945    o Fcof 6163
This theorem is referenced by:  tsmsadd  17931  jensen  20394  pwssplit2  26512  pwssplit3  26513  islindf4  26631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165
  Copyright terms: Public domain W3C validator