Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  offval Structured version   Unicode version

Theorem offval 6313
 Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
offval.1
offval.2
offval.3
offval.4
offval.5
offval.6
offval.7
Assertion
Ref Expression
offval
Distinct variable groups:   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()   ()

Proof of Theorem offval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 offval.1 . . . 4
2 offval.3 . . . 4
3 fnex 5962 . . . 4
41, 2, 3syl2anc 644 . . 3
5 offval.2 . . . 4
6 offval.4 . . . 4
7 fnex 5962 . . . 4
85, 6, 7syl2anc 644 . . 3
9 fndm 5545 . . . . . . . 8
101, 9syl 16 . . . . . . 7
11 fndm 5545 . . . . . . . 8
125, 11syl 16 . . . . . . 7
1310, 12ineq12d 3544 . . . . . 6
14 offval.5 . . . . . 6
1513, 14syl6eq 2485 . . . . 5
1615mpteq1d 4291 . . . 4
17 inex1g 4347 . . . . . 6
1814, 17syl5eqelr 2522 . . . . 5
19 mptexg 5966 . . . . 5
202, 18, 193syl 19 . . . 4
2116, 20eqeltrd 2511 . . 3
22 dmeq 5071 . . . . . 6
23 dmeq 5071 . . . . . 6
2422, 23ineqan12d 3545 . . . . 5
25 fveq1 5728 . . . . . 6
26 fveq1 5728 . . . . . 6
2725, 26oveqan12d 6101 . . . . 5
2824, 27mpteq12dv 4288 . . . 4
29 df-of 6306 . . . 4
3028, 29ovmpt2ga 6204 . . 3
314, 8, 21, 30syl3anc 1185 . 2
3214eleq2i 2501 . . . . 5
33 elin 3531 . . . . 5
3432, 33bitr3i 244 . . . 4
35 offval.6 . . . . . 6
3635adantrr 699 . . . . 5
37 offval.7 . . . . . 6
3837adantrl 698 . . . . 5
3936, 38oveq12d 6100 . . . 4
4034, 39sylan2b 463 . . 3
4140mpteq2dva 4296 . 2
4231, 16, 413eqtrd 2473 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  cvv 2957   cin 3320   cmpt 4267   cdm 4879   wfn 5450  cfv 5455  (class class class)co 6082   cof 6304 This theorem is referenced by:  ofval  6315  offn  6317  off  6321  ofres  6322  offval2  6323  ofco  6325  offveqb  6327  suppssof1  6347  o1rlimmul  12413  gsumbagdiaglem  16441  psrplusgpropd  16630  mbfadd  19554  mbfsub  19555  mbfmullem2  19617  mbfmul  19619  bddmulibl  19731  dvcmulf  19832  evlslem1  19937  ofrn2  24054  off2  24055  ofresid  24056  offval2f  24081  itg2addnc  26260  ftc1anclem8  26288 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pr 4404 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306
 Copyright terms: Public domain W3C validator